4.7 Article

Foliar carbon dot amendment modulates carbohydrate metabolism, rhizospheric properties and drought tolerance in maize seedling

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 809, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.151105

关键词

Drought; Carbon dots; Photosynthesis; Root exudates; Microbial community

资金

  1. National Natural Science Foundation of China [41820104009, 42077296, 41907304, 41807378]
  2. Agricultural Science and Technology Innovation Project of Jiangsu Province [CX(21)3073]
  3. USDA NIFA Hatch program [MAS 00549]

向作者/读者索取更多资源

The study found that foliar spraying of carbon dots can enhance root exudate secretion, alter microbial community composition, increase nitrogen and phosphorus content in soil, improve plant water uptake, promote plant growth, and alleviate the negative effects of drought on maize.
Improvingmaize drought tolerance is of great importance for scaling up production due to food security and population growth. Carbon dots (CDs) were synthesized by hydrothermal method with citric acid and ethylenediamine as carbon sources. Then, CDs (5 ml, 5 mg.L-1) were sprayed on 25th day-old maize (Zea mays L., drought-stress, 35% soil moisture) for seven consecutive days (spraying ultra-pure water as control), after which the physiological parameters and rhizospheric properties of maize under drought were evaluated. Foliar sprayed CDs (5 mg.L-1) could increase root exudates (e.g., succinic acid (14.5 folds), pyruvic acid (10.0 folds), and betaine (11.8 folds)), and modify microbial community. Particularly, the relative abundance of Pseudomonas, Sphingomonas, Nitrospira, and Conocybe were significantly increased by 344.4%, 233.3%, 126.2%, and 122.6%, respectively. The altered microbial abundance could improve soil available nitrogen and phosphorus by 33.5% and 16.8%, respectively, and increase plant water uptake by 37.2%. The change of exudate synthesis and microbial abundance could be driven by the significantly increased in net photosynthesis rate by 122.9%, and carbohydrate content by 35.4% in shoots and 113.6% in roots, respectively upon foliar application of CDs. Meanwhile, fresh weight of shoots and roots were increased by 62.1% and 50.6%, and dry weight of shoots and roots were increased by 29.2% and 37.5%, respectively. These results demonstrated that foliar application of CDs could improve the rhizosphere environment to enhance maize drought tolerance and even growth. Therefore, foliar application of CDs would be a promising strategy for sustainable nano-agriculture in response to drought stress. (C) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据