4.7 Article

Effects of further composting black soldier fly larvae manure on toxic metals and resistant bacteria communities by cornstalk amendment

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 806, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.150699

关键词

BSFL manure; Cornstalk; Composting; Toxic metals resistance bacteria

资金

  1. Shaanxi Introduced Talent Research Funding, China [A279021901]
  2. Introduction of Talent Research Start-up fund, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, China [Z101022001]

向作者/读者索取更多资源

The study found that adding cornstalk in BSFL manure composting can enhance the immobilization rate of toxic metals in the final product. By adjusting environmental factors and potential hosts bacteria, the addition of cornstalk significantly impacts the distribution of main resistant bacteria, thereby improving the quality of composting and the final product.
Rapid composting by black soldier fly larvae (BSFL) may be insufficient to maturation and humification of composting and further composting is necessary. The purpose of this study was to explore cornstalk addition on toxic metals (Cu, Zn, Pb and Cd), toxic metals resistance bacterial (TMRB) destiny and their relationship with physicochemical factors during BSFL manure composting. High-throughput sequencing was performed by six treatments, namely T1 to T6, where T1 to T3 were BSFL manures from chicken, pig and dairy manure, respectively, and T4 to T6 were same manures and utilized cornstalk to adjust C/N to 25. The results showed that cornstalk amendment could enhance the toxic metals immobilization rate compared to control treatments in the ultimate product. TMRB indicated that the major potential hosts bacteria were Firmicutes, Bacteroidota, Proteobacteria, Acidobacteriota and Actinobacteriota, and the sum relative abundance were 63.33%, 90.62%, 83.62%, 69.38%, 50.66% and 90.52% in T1 to T6 at the end of composting. Bacteria diversity and heat map revealed composting micro-ecology with additive cornstalk to remarkably effect main resistant bacterial distribution via adjusting environmental factors and potential hosts bacterial. Finally, T5 treatment was able to greatly decrease the TMRB abundance, and improve the ability of composting and ultimate product quality. (c) 2021 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据