4.7 Article

Automatic cloud and cloud shadow detection in tropical areas for PlanetScope satellite images

期刊

REMOTE SENSING OF ENVIRONMENT
卷 264, 期 -, 页码 -

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2021.112604

关键词

PlanetScope; Pixel quality control; Cloud and cloud shadow detection; Land cover types; Tropical areas; Ecological and environmental monitoring

资金

  1. National Natural Science Foundation of China [31922090]
  2. Division of Ecology and Biodiversity PDF research award
  3. United States Department of Energy [DE-SC0012704]

向作者/读者索取更多资源

The STI-ACSS approach integrates spatial and temporal information to accurately screen clouds and cloud shadows in PlanetScope satellite images, demonstrating high overall accuracy, producer accuracy for clouds and cloud shadows, and robustness across different sites and seasons.
PlanetScope satellite data with a 3-m resolution and near-daily global coverage have been increasingly used for land surface monitoring, ranging from land cover change detection to vegetative biophysics characterization and ecological assessments. Similar to other satellite data, effective screening of clouds and cloud shadows in PlanetScope images is a prerequisite for these applications, yet remains challenging as PlanetScope has 1) fewer spectral bands than other satellites hindering the use of traditional methods, and 2) inconsistent radiometric calibration across satellite sensors making the cloud/shadow detection using fixed thresholds unrealistic. To address these challenges, we developed a SpatioTemporal Integration approach for Automatic Cloud and Shadow Screening ('STI-ACSS'), including two steps: (1) generating initial masks of clouds/shadows by integrating both spatial (i.e. cloud/shadow indices of an individual PlanetScope image) and temporal (i.e. reflectance outliers in PlanetScope image time series) information with an adaptive threshold approach; (2) a two-step fine-tuning on these initial masks to derive final masks by integrating morphological processing with an object-based cloud and cloud shadow matching. We tested STI-ACSS at six tropical sites representative of different land cover types (e.g. forest, urban, cropland, savannah, and shrubland). For each site, we evaluated the performance of STI-ACSS with reference to the manual masks of clouds/shadows, and compared it with four state-of-the-art methods, namely Function of mask (Fmask), Automatic Time-Series Analysis (ATSA), Iterative Haze Optimized Transformation (IHOT) and the default PlanetScope quality control layer. Our results show that, across all sites, STI-ACSS 1) has the highest average overall accuracy (98.03%), 2) generates an average producer accuracy of 95.53% for clouds and 89.48% for cloud shadows, and 3) is robust across sites and seasons. These results suggest the effectiveness of using STI-ACSS for cloud/shadow detection for PlanetScope satellites in the tropics, with potential to be extended to other satellite sensors with limited spectral bands.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据