4.8 Article

Catalytic Transformations of Pure Entangled States

期刊

PHYSICAL REVIEW LETTERS
卷 127, 期 15, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.127.150503

关键词

-

资金

  1. Quantum Optical Technologies project
  2. European Union under the European Regional Development Fund

向作者/读者索取更多资源

This study explores the quantification of quantum entanglement and its relationship with entanglement distillation. It is shown that entanglement entropy completely characterizes state transformations in the presence of entangled catalysts, giving operational significance to asymptotic results in the single-copy setting.
Quantum entanglement of pure states is usually quantified via the entanglement entropy, the von Neumann entropy of the reduced state. Entanglement entropy is closely related to entanglement distillation, a process for converting quantum states into singlets, which can then be used for various quantum technological tasks. The relation between entanglement entropy and entanglement distillation has been known only for the asymptotic setting, and the meaning of entanglement entropy in the single-copy regime has so far remained open. Here we close this gap by considering entanglement catalysis. We prove that entanglement entropy completely characterizes state transformations in the presence of entangled catalysts. Our results imply that entanglement entropy quantifies the amount of entanglement available in a bipartite pure state to be used for quantum information processing, giving asymptotic results an operational meaning also in the single-copy setup.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据