4.8 Article

Robust Self-Testing of Multiparticle Entanglement

期刊

PHYSICAL REVIEW LETTERS
卷 127, 期 23, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.127.230503

关键词

-

资金

  1. National Natural Science Foundation of China
  2. Chinese Academy of Sciences
  3. National Fundamental Research Program
  4. Anhui Initiative in Quantum Information Technologies
  5. Department of Defense through the Hartree Postdoctoral Fellowship in the Joint Center for Quantum Information and Computer Science (QuICS)

向作者/读者索取更多资源

This study demonstrates robust self-testing for multiphoton genuinely entangled quantum states, certifying four-photon entanglement in Greenberger-Horne-Zeilinger states and linear cluster states with fidelities of 0.957 and 0.945, respectively. By observing input-output statistics, the qualities of these entangled states with respect to realistic noise were estimated in a device-independent manner.
Quantum self-testing is a device-independent way to certify quantum states and measurements using only the input-output statistics, with minimal assumptions about the quantum devices. Because of the high demand on tolerable noise, however, experimental self-testing was limited to two-photon systems. Here, we demonstrate the first robust self-testing for multiphoton genuinely entangled quantum states. We prepare two examples of four-photon graph states, the Greenberger-Horne-Zeilinger states with a fidelity of 0.957(2) and the linear cluster states with a fidelity of 0.945(2). Based on the observed input-output statistics, we certify the genuine four-photon entanglement and further estimate their qualities with respect to realistic noise in a device-independent manner.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Physics, Multidisciplinary

Measurement-Device-Independent Quantum Key Distribution Based on Decoherence-Free Subspaces with Logical Bell State Analyzer

Jun-Hao Wei, Xin-Yu Xu, Shu-Ming Hu, Qing Zhou, Li Li, Nai-Le Liu, Kai Chen

Summary: Measurement-device-independent quantum key distribution (MDI-QKD) is a method that enables two legitimate users to generate shared information-theoretic secure keys with immunity to all detector side attacks. However, the original proposal using polarization encoding is sensitive to polarization rotations from birefringence and misalignment. To overcome this problem, we propose a robust QKD protocol based on decoherence-free subspaces using polarization-entangled photon pairs. We design a logical Bell state analyzer for such encoding.

ENTROPY (2023)

Article Optics

High-rate quantum key distribution exceeding 110 Mb s-1

Wei Li, Likang Zhang, Hao Tan, Yichen Lu, Sheng-Kai Liao, Jia Huang, Hao Li, Zhen Wang, Hao-Kun Mao, Bingze Yan, Qiong Li, Yang Liu, Qiang Zhang, Cheng-Zhi Peng, Lixing You, Feihu Xu, Jian-Wei Pan

Summary: This article reports a QKD system that can generate keys at a record high rate of 115.8 Mb/s over a 10 km standard optical fiber and distribute keys over up to 328 km of ultralow-loss fiber. These abilities are attributed to a multipixel superconducting nanowire single-photon detector with an ultrahigh counting rate, an integrated transmitter that can stably encode polarization states with low error, a fast post-processing algorithm for generating keys in real time, and the high system clock rate operation. The results demonstrate the feasibility of practical high-rate QKD with photonic techniques, thus opening its possibility for widespread applications.

NATURE PHOTONICS (2023)

Article Physics, Multidisciplinary

Twin-Field Quantum Key Distribution without Phase Locking

Wei Li, Likang Zhang, Yichen Lu, Zheng-Ping Li, Cong Jiang, Yang Liu, Jia Huang, Hao Li, Zhen Wang, Xiang-Bin Wang, Qiang Zhang, Lixing You, Feihu Xu, Jian-Wei Pan

Summary: We propose and demonstrate a new method to achieve twin-field quantum key distribution (TF-QKD) without the need for phase locking. By separating the communication time into reference frames and quantum frames, we establish a global phase reference using the reference frames and reconcile the phase reference efficiently using a tailored algorithm based on fast Fourier transform. We successfully demonstrate no-phase-locking TF-QKD from short to long distances over standard optical fibers, achieving high secret key rates and repeaterlike key rates. Our work provides a scalable and practical solution to TF-QKD, representing an important step towards its wide applications.

PHYSICAL REVIEW LETTERS (2023)

Article Physics, Multidisciplinary

Unconditional and Robust Quantum Metrological Advantage beyond N00N States

Jian Qin, Yu-Hao Deng, Han-Sen Zhong, Li-Chao Peng, Hao Su, Yi-Han Luo, Jia-Min Xu, Dian Wu, Si-Qiu Gong, Hua-Liang Liu, Hui Wang, Ming-Cheng Chen, Li Li, Nai-Le Liu, Chao-Yang Lu, Jian-Wei Pan

Summary: Quantum metrology aims to enhance measurement sensitivity by utilizing quantum resources. We propose and realize a novel quantum metrology scheme that combines unconventional nonlinear interferometers and stimulated emission of squeezed light. Our method achieves a scalable, unconditional, and robust quantum metrological advantage, outperforming ideal 5-N00N states. The demonstrated enhancement in Fisher information per photon, without discounting for imperfections or photon loss, makes our approach applicable in practical quantum metrology at low photon flux regime.

PHYSICAL REVIEW LETTERS (2023)

Article Physics, Multidisciplinary

Experimental Full Network Nonlocality with Independent Sources and Strict Locality Constraints

Xue-Mei Gu, Liang Huang, Alejandro Pozas-Kerstjens, Yang-Fan Jiang, Dian Wu, Bing Bai, Qi-Chao Sun, Ming-Cheng Chen, Jun Zhang, Sixia Yu, Qiang Zhang, Chao-Yang Lu, Jian-Wei Pan

Summary: Nonlocality in networks composed of independent sources exhibits different phenomena compared to standard Bell scenarios. Network nonlocality in the entanglement-swapping scenario has been extensively studied, but previous violations of bilocality inequality could not certify the nonclassicality of their sources. We experimentally observe full network nonlocal correlations in a network where the loopholes of source-independence, locality, and measurement-independence are closed. Our experiment violates known inequalities for nonfull network nonlocal correlations by over 5 standard deviations, confirming the absence of classical sources.

PHYSICAL REVIEW LETTERS (2023)

Article Physics, Multidisciplinary

Full-Period Quantum Phase Estimation

Li-Zheng Liu, Yue-Yang Fei, Yingqiu Mao, Yi Hu, Rui Zhang, Xu-Fei Yin, Xiao Jiang, Li Li, Nai-Le Liu, Feihu Xu, Yu-Ao Chen, Jian-Wei Pan

Summary: In this study, a full-period quantum phase estimation approach is proposed and demonstrated. The approach adopts Kitaev's phase estimation algorithm to eliminate phase ambiguity and uses GHZ states to obtain phase values. Through an eight-photon experiment, the estimation of unknown phases in a full period is achieved, and the phase super-resolution and sensitivity beyond the shot-noise limit are observed. This research provides a new way for quantum sensing and represents a solid step towards its general applications.

PHYSICAL REVIEW LETTERS (2023)

Article Physics, Multidisciplinary

Experimental Simulation of Larger Quantum Circuits with Fewer Superconducting Qubits

Chong Ying, Bin Cheng, Youwei Zhao, He-Liang Huang, Yu-Ning Zhang, Ming Gong, Yulin Wu, Shiyu Wang, Futian Liang, Jin Lin, Yu Xu, Hui Deng, Hao Rong, Cheng-Zhi Peng, Man -Hong Yung, Xiaobo Zhu, Jian-Wei Pan

Summary: Although NISQ quantum computing devices are still limited in terms of qubit quantity and quality, quantum computational advantage has been experimentally demonstrated. Hybrid quantum and classical computing architectures have become the main paradigm for exhibiting NISQ applications, with the use of low-depth quantum circuits. This study demonstrates a circuit-cutting method for simulating quantum circuits with multiple logical qubits using only a few physical superconducting qubits, showcasing higher fidelity and scalability.

PHYSICAL REVIEW LETTERS (2023)

Article Physics, Multidisciplinary

Solving Graph Problems Using Gaussian Boson Sampling

Yu-Hao Deng, Si-Qiu Gong, Yi-Chao Gu, Zhi-Jiong Zhang, Hua-Liang Liu, Hao Su, Hao-Yang Tang, Jia-Min Xu, Meng-Hao Jia, Ming-Cheng Chen, Han-Sen Zhong, Hui Wang, Jiarong Yan, Yi Hu, Jia Huang, Wei -Jun Zhang, Hao Li, Xiao Jiang, Lixing You, Zhen Wang, Li Li, Nai-Le Liu, Chao -Yang Lu, Jian-Wei Pan

Summary: Gaussian boson sampling (GBS) is a protocol for demonstrating quantum computational advantage and is mathematically associated with graph-related and quantum chemistry problems. This study investigates the enhancement of GBS over classical stochastic algorithms on noisy quantum devices in the computationally interesting regime. Experimental results show the presence of GBS enhancement with a large photon-click number and robustness under certain noise, which may stimulate the development of more efficient classical and quantum-inspired algorithms.

PHYSICAL REVIEW LETTERS (2023)

Article Instruments & Instrumentation

Free-running 4H-SiC single-photon detector with ultralow afterpulse probability at 266 nm

Chao Yu, Tianyi Li, Xian-Song Zhao, Hai Lu, Rong Zhang, Feihu Xu, Jun Zhang, Jian-Wei Pan

Summary: In this study, a 4H-SiC single-photon avalanche diode (SPAD) based free-running ultraviolet single-photon detector (UVSPD) with ultralow afterpulse probability is reported. A beveled mesa structure is designed and fabricated for the 4H-SiC SPAD, which shows the characteristic of ultralow dark current. A readout circuit of passive quenching and active reset with a tunable hold-off time setting is further developed to significantly suppress the afterpulsing effect. The nonuniformity of photon detection efficiency (PDE) across the SPAD active area is investigated for performance optimization. The compact UVSPD shows a PDE of 10.3%, a dark count rate of 133 kcps, and an afterpulse probability of 0.3% at 266 nm, indicating its potential for practical ultraviolet photon-counting applications.

REVIEW OF SCIENTIFIC INSTRUMENTS (2023)

Review Physics, Multidisciplinary

Recent advances in laser self-injection locking to high-Q microresonators

Nikita M. Kondratiev, Valery E. Lobanov, Artem E. Shitikov, Ramzil R. Galiev, Dmitry A. Chermoshentsev, Nikita Yu. Dmitriev, Andrey N. Danilin, Evgeny A. Lonshakov, Kirill N. Min'kov, Daria M. Sokol, Steevy J. Cordette, Yi-Han Luo, Wei Liang, Junqiu Liu, Igor A. Bilenko

Summary: The stabilization and manipulation of laser frequency using an external cavity is widely used in fundamental research and laser applications. The self-injection locking effect can significantly reduce laser linewidth and noise by locking the laser emission frequency to the cavity mode. This method paves the way for high-performance, compact, and cost-effective semiconductor lasers, and it also enables the generation of both pulse and frequency combs in the same microresonator using integrated photonics technology.

FRONTIERS OF PHYSICS (2023)

Article Optics

Foundry manufacturing of tight-confinement, dispersion-engineered, ultralow-loss silicon nitride photonic integrated circuits

Zhichao Ye, Haiyan Jia, Zhangjun Huang, Chen Shen, Jinbao Long, Baoqi Shi, Yi-Han Luo, Lan Gao, Wei Sun, Hairun Guo, Jijun He, Junqiu Liu

Summary: The foundry development of integrated photonics has revolutionized optical interconnect and datacenters. Silicon nitride (Si3N4) integrated photonics has become the leading platform for linear and Kerr nonlinear photonics, offering low optical loss and ultra-low noise chip-scale lasers. However, challenges remain in transferring these processes to CMOS foundries operating with larger wafers.

PHOTONICS RESEARCH (2023)

Article Optics

Preparation of a quantum degenerate mixture of 23Na 40K molecules and 40K atoms

Jin Cao, Huan Yang, Zhen Su, Xin-Yao Wang, Jun Rui, Bo Zhao, Jian-Wei Pan

Summary: We have successfully prepared a quantum degenerate mixture of 23Na 40K molecules and 40K atoms. The atoms are highly degenerate with a large number ratio, while the molecules are in a moderately degenerate state. The elastic collisions between the atoms and molecules provide a thermalization mechanism, allowing the molecules to reach thermal equilibrium before significant losses occur. The degeneracy of the molecules is maintained for a sufficient time interval for further study and production of ultracold triatomic molecular gases.

PHYSICAL REVIEW A (2023)

暂无数据