4.8 Article

Genome-wide mapping of G-quadruplex structures with CUT&Tag

期刊

NUCLEIC ACIDS RESEARCH
卷 50, 期 3, 页码 -

出版社

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkab1073

关键词

-

资金

  1. Swedish National Infrastructure for Computing (SNIC) at Uppmax server [SNIC 2020/15-9, SNIC 2020/6-3, uppstore2018208, SNIC 2018/3-669, sllstore2017057, SNIC 2017/1-508]

向作者/读者索取更多资源

Recent evidence suggests that G-quadruplex (G4) structures impact gene expression, DNA methylation, replicative processes, and genome stability. The use of CUT&Tag technology allows high-resolution mapping of G4 structures in mammalian cells, revealing widespread presence at active promoters and enhancers in mouse ESCs.
Single-stranded genomic DNA can fold into G-quadruplex (G4) structures or form DNA:RNA hybrids (R loops). Recent evidence suggests that such non-canonical DNA structures affect gene expression, DNA methylation, replication fork progression and genome stability. When and how G4 structures form and are resolved remains unclear. Here we report the use of Cleavage Under Targets and Tagmentation (CUT&Tag) for mapping native G4 in mammalian cell lines at high resolution and low background. Mild native conditions used for the procedure retain more G4 structures and provide a higher signal-to-noise ratio than ChIP-based methods. We determine the G4 landscape of mouse embryonic stem cells (ESC), observing widespread G4 formation at active promoters, active and poised enhancers. We discover that the presence of G4 motifs and G4 structures distinguishes active and primed enhancers in mouse ESCs. Upon differentiation to neural progenitor cells (NPC), enhancer G4s are lost. Further, performing R-loop CUT&Tag, we demonstrate the genome-wide co-occurrence of single-stranded DNA, G4s and R loops at promoters and enhancers. We confirm that G4 structures exist independent of ongoing transcription, suggesting an intricate relationship between transcription and non-canonical DNA structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据