4.7 Article

Perceptual fusion of infrared and visible images through a hybrid multi-scale decomposition with Gaussian and bilateral filters

期刊

INFORMATION FUSION
卷 30, 期 -, 页码 15-26

出版社

ELSEVIER
DOI: 10.1016/j.inffus.2015.11.003

关键词

Multi-scale decomposition; Image fusion; Gaussian filter; Bilateral filter; Human perception

资金

  1. National Natural Science Foundation of China [61403033]

向作者/读者索取更多资源

In order to achieve perceptually better fusion of infrared (IR) and visible images than conventional pixel-level fusion algorithms based on multi-scale decomposition (MSD), we present a novel multi-scale fusion method based on a hybrid multi-scale decomposition (hybrid-MSD). The proposed hybrid-MSD transform decomposes the source images into multi-scale texture details and edge features by jointly using multi-scale Gaussian and bilateral filters. This transform enables to better capture important multi-scale IR spectral features and separate fine-scale texture details from large-scale edge features. As a result, we can use it to achieve better fusion result for human visual perception than those obtained from conventional multi-scale fusion methods, by injecting the multi-scale IR spectral features into the visible image, while preserving (or properly enhancing) important perceptual cues of the background scenery and details from the visible image. In the decomposed information fusion process, three different combination algorithms are adaptively used in accordance to different scale levels (i.e., the small-scale levels, the large-scale levels and the base level). A regularization parameter is introduced to control the relative amount of IR spectral information injected into the visible image in a soft manner, which can be adjusted further depending on user preferences. Moreover, by testing different settings of the parameter, we demonstrate that injecting a moderate amount of IR spectral information with this parameter can actually make the fused images visually better for some infrared and visible source images. Experimental results of both objective assessment and subjective evaluation by human observers also prove the superiority of the proposed method compared with conventional MSD-based fusion methods. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据