4.7 Article

Cyclosporine A Nanosuspensions for Ophthalmic Delivery: A Comparative Study between Cationic Nanoparticles and Drug-Core Mucus Penetrating Nanoparticles

期刊

MOLECULAR PHARMACEUTICS
卷 18, 期 12, 页码 4290-4298

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.molpharmaceut.1c00370

关键词

cyclosporine A; nanosuspension; mucus penetrating nanoparticles; cationic nanoparticles; ocular drug delivery system

向作者/读者索取更多资源

The study compared the mucoadhesion of cationic nanoparticles and mucous permeability of MPPs on ocular bioavailability. Both cationic and MPP nanosuspensions showed effective delivery of CsA to anterior ocular tissues, with the cationic nanosuspension achieving relatively higher bioavailability. The results suggest that cationic nanosuspension could be a promising ocular drug delivery system.
The effect of mucin on ocular bioavailability depends on the extent to which it acts as a barrier or retention site. Mucus penetrating particles (MPPs) can evade the mucus entrapment and associated rapid clearance, but cationic nanoparticles have high adhesion to the mucosa. Both formulations can prolong the drug residence time on the surface of the eyes. The purpose of this work is to compare the effects of mucoadhesion of cationic nanoparticles and mucous permeability of MPPs on ocular bioavailability. Cationic nanosuspensions and drug-core MPP nanosuspensions were developed using the anti-solvent precipitation method. The results of X-ray diffraction revealed that CsA was amorphous. In vitro mucoadhesion evaluation demonstrated that cationic nanosuspensions enhanced the interaction with pig mucin about 5.0-6.0 fold compared to drug-core MPP nanosuspensions. A mucus permeation study by the transwell diffusion system showed that the P-app values of drug-core MPP nanosuspensions were 5.0-10.0 times higher than those of cationic nanosuspensions. In vivo ocular bioavailability evaluation of those CsA formulations was conducted in rabbits using a conventional nanosuspension as a comparison. The CsA concentrations in the cornea following the administration of a cationic nanosuspension and a drug-core MPP nanosuspension were 13,641.10 ng/g and 11,436.07 ng/g, respectively, significantly higher than that of the conventional nanosuspension (8310.762 ng/g). The results showed that both the cationic and MPP nanosuspensions were able to deliver CsA to anterior ocular tissues in effective therapeutic concentrations (10-20 mu g/g) with topical drop instillation. The cationic nanosuspension could achieve relatively higher bioavailability than the MPP nanosuspension. The cationic nanosuspension would be a promising ocular drug delivery system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据