4.7 Article

In vitro expansion of human adipose-derived stem cells with delayed senescence through dual stage release of curcumin from mesoporous silica nanoparticles/electrospun nanofibers

期刊

LIFE SCIENCES
卷 285, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.lfs.2021.119947

关键词

Curcumin; Mesoporous silica nanoparticles; Electrospun nanofibers; Human adipose-derived stem cells; Senescence; Regenerative medicine

资金

  1. Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

向作者/读者索取更多资源

Electrospun nanofibers with dual-stage release of curcumin were found to support the attachment, viability, and proliferation of adipose-derived stem cells while delaying cellular senescence. The study showed that the two-stage discharge profile of curcumin from the nanofibrous scaffolds enhanced the biofunctionality of long-term cultured stem cells for regenerative therapies, with improved adhesion, metabolic activity, and decreased senescence levels.
Electrospun nanofibers (NFs) were utilized to realize the dual-stage release of curcumin (Curc) to fully support the attachment, viability and proliferation of adipose-derived stem cells (hADSCs) with a delay in cellular senescence. For this purpose, both free Curc and Curc-loaded mesoporous silica nanoparticles (Curc@MSNs) were integrated into the electrospun polycaprolactone/gelatin (PCL/GEL) nanofibrous scaffolds and characterized via FTIR, BET, FE-SEM and TEM. In vitro drug release results demonstrated strong dual stage-discharge of Curc from the Curc/Curc@MSNs-NFs. Because of the combination of initial rapid release and late extended drug release, hADSCs cultured on the Curc/Curc@MSNs-NFs showed the greatest adhesion, metabolic activity and proliferation rate with a fibroblastic phenotype after 28 days of culture. Besides, a significant reduction in senescence-associated lysosomal alpha-L-fucosidase (SA-alpha-Fuc) expression and activity was also measured in hADSCs cultured on the Curc/Curc@MSNs-NFs. Moreover, not only the expression of hTERT in mRNA and protein levels was considerably increased in hADSCs seeded on the Curc/Curc@MSNs-NFs, but also the telomerase activity and telomere length were significantly enhanced in the scaffolds compared to the other types of scaffolds and control group. These results uncovered the potential of the two-stage discharge profile of Curc from Curc/Curc@MSNs-NFs to provide the biofunctionality of long-term cultured hADSCs for efficient stem cell-based regenerative therapies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据