4.8 Article

An experimental and modeling study of sodium-ion battery electrolytes

期刊

JOURNAL OF POWER SOURCES
卷 516, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2021.230658

关键词

Sodium-ion battery; Electrolytes; Conductivity; Viscosity; Advanced electrolyte model

资金

  1. European Union's Horizon 2020 Research and Innovation Program [769900-DEMOBASE, 646433-NAIADES]

向作者/读者索取更多资源

The study investigated the viscosity and conductivity characteristics of sodium-ion battery electrolyte using experimental and modeling approaches, revealing the optimal binary electrolyte for SIBs. Experimental results showed that the relationship between conductivity and viscosity follows a simple Stokes' law, and the stability of electrolytes on hard carbon was found to be correlated with the preferential ion solvation of EC.
Electrolytes play an integral role in the successful operation of any battery chemistry. The reemergence of the sodium-ion battery (SIB) chemistry has therefore rejuvenated the search for optimized SIB salts and solvents. Recent experiments have found that 1 M NaPF6 in ethylene carbonate (EC) and propylene carbonate (PC), EC0.5 : PC0.5 (w/w) is the best binary electrolyte for SIBs. However, mathematical models, to elucidate these experimental findings, have so far been lacking. Furthermore, no attempts to understand the effect of EC composition on the conductivity and electrolyte stability have been performed. Herein, the viscosity and conductivity profiles of NaPF6 in EC0.5 : PC0.5 electrolyte are unraveled, using experimental and modeling approaches at different temperatures and salt concentrations. The viscosity is measured in a double-wall Couette cell and for the first time, the ionic conductivity is determined using two Pt blocking electrodes in a PAT-Cell electrochemical setup. Modeling is performed using the Advanced Electrolyte Model (AEM), a statistical mechanics software. It is shown that the conductivity and viscosity relationship follows a simple Stokes' law even at a low temperatures and high concentrations. In addition, the stability of binary and ternary electrolytes on hard carbon is shown to correlate with the preferential ion solvation of EC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据