4.6 Article

Titaniumdioxide mediated sonophotodynamic therapy against prostate cancer

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jphotobiol.2021.112333

关键词

Titanium dioxide; Sonodynamic therapy; Photodynamic therapy; Prostate cancer; PC3

资金

  1. Adnan Menderes University Research Grant [ADU-TPF-20002]

向作者/读者索取更多资源

This study aimed to investigate the antitumor efficiency of titanium dioxide mediated photodynamic, sonodynamic, and sonophotodynamic therapies on the PC3 prostate cancer cell line. The results suggest that titanium dioxide-mediated sonophotodynamic therapy may offer a promising approach for prostate cancer therapy and play a key role in the apoptotic mechanism of these treatments.
In this study, we aimed to investigate of antitumor efficiency of titanium dioxide mediated photodynamic (PDT), sonodynamic (SDT), and sonophotodynamic (SPDT) therapies with a possible mechanism against the PC3 prostate cancer cell line. SPDT is a new approach to cancer treatment that combines sonodynamic and photodynamic therapies. On the other hand, Titanium dioxide (TiO2) has been used in many applications in pharmaceutical products and cosmetics, industrial products, and medicines. TiO2 nanoparticles will be useful for the treatment of cancer with PDT and SDT as the sensitizers in medicine. In this study, TiO2 nanoparticles were used for an in vitro comparison between the PDT, SDT, SPDT damages on prostate cancer cell lines. For this purpose, the cells were incubated in RPMI-1640 media with various concentrations of TiO2 and subjected to 0,5 W/cm2 ultrasound and/or 0,5 mJ/cm2 light irradiation. The prostate cancer cells were irradiated with light and exposed with the US and both for SPDT in the presence and/or absence of TiO2. Cell viability was measured using by MTT test after treatments. Investigate to apoptosis mechanism, Propidium iodide and Hoechst 33342 staining were used and the results showed that apoptotic cell bodies were increased compared with other groups. According to western blot analyses, caspase-3, caspase-8, PARP, and Bax levels were decreased after treatments, whereas the expression levels of caspase-9 were increased. Biochemical results showed that after treatments MDA levels were increased while SOD, CAT, GSH levels were decreased. In conclusion, TiO2-mediated SPDT may provide a promising approach for prostate cancer therapy and might play a key role in the apoptotic mechanism of these treatments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据