4.7 Article

Biodegradable and conventional microplastics exhibit distinct microbiome, functionality, and metabolome changes in soil

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 424, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2021.127282

关键词

Microplastics; Biodegradable; Metagenomics; Metabolomics; Multifunctionality

资金

  1. National Key Research and Development Program [2019YFC1604501]
  2. National Natural Science Foundation of China [41907341]
  3. State Key Joint Laboratory of Environmental Simulation and Pollution Control [19L01ESPC]

向作者/读者索取更多资源

This study found that both conventional and biodegradable microplastics can significantly alter the composition of soil microbial communities, with biodegradable microplastics potentially promoting multifunctionality among soil microbes.
Environmental concerns with liberal petroleum-based plastic use have led to demand for sustainable biodegradable alternatives. However, the inadequate end-of-life treatment of plastics may emit microplastics, either conventional or biodegradable, to the terrestrial environment. It is essential to evaluate the possible effects of conventional and biodegradable microplastics on the composition and function of soil microbial communities. Therefore, we conducted a soil microcosm experiment with polyethylene (PE), polystyrene (PS), polylactide (PLA), or polybutylene succinate (PBS) microplastics. The soil microbiome and metabolome were evaluated via 16S rRNA gene sequencing, metagenomics, and untargeted metabolomics. We reported that the presence of conventional or biodegradable microplastics can significantly alter soil microbial community composition. Compared to the control soils, the microbiome in PBS and PLA amended soils exhibited higher potential for uptake of exogenous carbohydrates and amino acids, but a reduced capacity for related metabolic function, potentially due to catabolite repression. No differences in soil metabolome can be observed between conventional microplastic treatments and the control. The potential reason may be that the functional diversity was unaffected by PE and PS microplastics, while the biodegradable particles promoted the soil microbial multifunctionality. Our findings systematically shed light on the influence of conventional and biodegradable microplastics on soil microorganisms, facilitating microplastic regulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据