4.7 Article

Molecular dynamics simulations on one-way shape memory effect of nanocrystalline NiTi shape memory alloy and its cyclic degeneration

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijmecsci.2021.106777

关键词

Nanocrystalline shape memory alloy; One-way shape memory effect; Cyclic degeneration; Microscopic mechanisms; Molecular dynamics

资金

  1. National Natural Science Foundation of China [11532010, 12102372]
  2. Natural Science Foundation of Southwest University of Science and Technology [20zx7115]

向作者/读者索取更多资源

The research focuses on the investigation of the one-way shape memory effect and cyclic degeneration in nanocrystalline NiTi shape memory alloy under thermo-mechanically coupled cyclic loading conditions. It is found that martensite reorientation occurs through the migration of interfaces between martensite variants, growth of martensite variants with preferred orientations, and their assimilation to variants with unfavorable orientations. The cyclic degeneration of the one-way shape memory effect is attributed to interactions among martensite reorientation, martensite transformation, martensite reorientation-induced plasticity, and martensite transformation-induced plasticity.
The one-way shape memory effect (OWSME) of nanocrystalline NiTi shape memory alloy (SMA) and its cyclic degeneration under thermo-mechanically coupled cyclic loading conditions were investigated by molecular dynamics (MD) simulations. Firstly, the critical temperatures of martensite transformation were obtained by carrying out the MD simulations of temperature-induced martensite transformation; then, the microscopic mechanisms of martensite reorientation-induced plasticity, the deformation during the subsequent heating and cooling, and the cyclic degeneration of OWSME were investigated based on the correspondent MD simulations. The results show that the martensite reorientation of nanocrystalline NiTi SMA occurs via the migration of the interfaces between martensite variants, the growth of martensite variants with favorable orientations and their swallowing to the variants with unfavorable orientations under specific mechanical loading conditions; the cyclic degeneration of OWSME in nanocrystalline NiTi SMA is caused by the interaction among the martensite reorientation, martensite transformation, martensite reorientation-induced plasticity and martensite transformationinduced plasticity occurred in the martensite region and at the interfaces between martensite variants. The martensite reorientation in each OWSME cycle is reflected by the migration of martensite variant interfaces and the growth and swallowing of martensite variants; the martensite transformation in each OWSME cycle is the nucleation and growth of martensite phase; and the accumulation of plastic deformation is caused by the migration of martensite variant interfaces and the dislocation slipping at the martensite variant interfaces which leads to the cyclic degeneration of OWSME. The MD simulations are verified further by comparing them with the available experimental results of NiTi SMA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据