4.7 Article

Experimental investigation of a parabolic greenhouse dryer improved with copper oxide nano-enhanced latent heat thermal energy storage unit

期刊

INTERNATIONAL JOURNAL OF ENERGY RESEARCH
卷 46, 期 3, 页码 3647-3662

出版社

WILEY-HINDAWI
DOI: 10.1002/er.7412

关键词

copper oxide; greenhouse dryer; latent heat thermal storage; nanoparticle; phase change material

资金

  1. Scientific Research Project Coordination Unit (BAP) of Manisa Celal Bayar University [2020-088]

向作者/读者索取更多资源

The study investigates the impact of utilizing nano-enhanced thermal energy storage unit on the performance of a greenhouse dryer, comparing different types of greenhouse dryers. Results show that utilizing nano-enhanced modification significantly reduces drying time and improves energy efficiency.
Solar dryers are clean and sustainable systems for preserving agricultural products. In this research, three different active greenhouse dryers, which are grouped in direct solar drying systems, have been designed, fabricated, and experimentally surveyed. Different from other works, this research contains an experimental investigation on nano-embedded thermal storage-assisted greenhouse drying system. Major goal of this study is to analyze the impact of utilizing nano-enhanced thermal energy storage unit on the performance of a greenhouse dryer. In this context, tunnel-type parabolic greenhouse dryers with paraffin wax thermal storage unit (PGD-TES) and nano-enhanced paraffin wax thermal storage unit (PGD-NeTES) have been tested and compared with a conventional parabolic greenhouse dryer (PGD). Copper oxide (CuO) nanoparticles have been employed to upgrade the thermal effectiveness of the thermal storage unit. Tests have been done in two flow rates, which are 0.009 and 0.014 kg/s. Utilizing nano-enhanced modification decreased drying time approximately between 35% and 58% in comparison to the conventional dryer. According to the results, average specific energy consumption values were attained in the ranges of 2.10 to 2.48, 1.93 to 2.09, and 1.63 to 1.89 kWh/kg, respectively, for PGD, PGD-TES, and PGD-NeTES. Also, exergy efficiency was improved by 36% by utilizing the nano-enhanced thermal energy storage system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据