4.7 Article

Mapping saffron fields and their ages with Sentinel-2 time series in north-east Iran

出版社

ELSEVIER
DOI: 10.1016/j.jag.2021.102398

关键词

Saffron; Sentinel-2 time series; Random Forest; Spectral-temporal features; Age-based classification; Separability analysis; Phenology

资金

  1. Faculty ITC of the University of Twente for providing her a MSc student scholarship (ITC Foundation Scholarship)

向作者/读者索取更多资源

This study utilized Sentinel-2 time series data to accurately map saffron fields and their age groups, demonstrating a high classification accuracy and effective spectral separability for different age groups using NDVI. These findings provide a solid basis for mapping saffron across larger areas and for monitoring changes in saffron distribution.
Saffron (Crocus sativus L.) is the most expensive spice worldwide and is predominantly produced in the Khorasan Province situated in north-east Iran. Climatic shifts and lowering groundwater tables negatively affect saffron yields in this region, which are determined by environmental factors, agronomical practices, and crop age. Nonetheless, spatially explicit information on changes in saffron cultivation is scarce, underlining a need for better monitoring tools. This study aims to evaluate the utility of Sentinel-2 (S2) time series in accurately mapping saffron fields and their ages (i.e., how many years saffron was cultivated in a field), based on its unique phenology. To separate saffron from other land covers, we first derived 252 spectral-temporal features by calculating 21 spectral features (10 individual bands plus 11 vegetation indices) for each of the 12 months. A Random Forest (RF) algorithm was then used in combination with field data to retain only features of high importance for saffron classification. These features comprised vegetation indices that incorporated spectral information from red, and near-and shortwave infrared bands during the phenological phases of the rapid green up (February to March) and the dormant period (August to October). The RF classifier resulted in a saffron map for the year 2019 with a high classification accuracy based on these features. Compared against an independent in-situ saffron field dataset, 87.6% of the existing fields were correctly classified as saffron. To assess saffron field ages, we analysed the spectral separability of different age groups using the NDVI time series. We found that NDVI levels between December and May allowed for effectively separating 1st, 2nd, 3rd, 4th-6th, and 7th-8th year saffron fields. An RF-based classification of field ages resulted in an overall accuracy of 86.8%. This study demonstrated that S2 time series data allow for accurately mapping saffron fields and their age groups. Our findings provide a solid basis for mapping saffron across larger areas and for monitoring changes in saffron distribution. Such information is crucial for understanding how anthropogenic and climate change impacts will affect the future of saffron cultivation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据