4.8 Article

Bidirectional Resonant DC-DC Step-Up Converters for Driving High-Voltage Actuators in Mobile Microrobots

期刊

IEEE TRANSACTIONS ON POWER ELECTRONICS
卷 31, 期 1, 页码 340-352

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TPEL.2015.2397341

关键词

Autonomous microrobots; electroactive polymer (EAP) actuators; electrostatic; energy recovery; inchworm motors; miniaturization; power electronics; resonant converters

向作者/读者索取更多资源

Electroactive polymer (EAP) actuators have been investigated to convert electrical energy into mechanical deformation in autonomous microrobots. The use of dielectric EAP actuators comes with several challenges to address requirements such as high excitation voltages, explicit driving signals, and low conversion efficiency. External bulky and heavy power sources are used to generate and provide required excitation voltages. The development of a miniature, high voltage gain, and highly efficient power electronic interface is required to overcome such challenges and enable autonomous operation of miniature robots. In this paper, a bidirectional single-stage resonant dc-dc step-up converter is introduced and developed to efficiently drive high-voltage EAP actuators in mobile microrobots. The converter utilizes resonant capacitors and a coupled inductor as a soft-switched LC network to step up low input voltage. High-frequency soft-switching operation owing to LC resonance allows small footprint of the circuit without suffering from switching losses, which in turn increases the efficiency. The circuit is capable of generating explicit high-voltage actuation signals, with capability of recovering unused energy from EAP actuators. A 4-mm x 8-mm, 100-mg, and 600-mW prototype has been designed and fabricated to drive an in-plane gap-closing electrostatic inchworm motor. Experimental validations have been carried out to verify the circuit's ability to step up voltage from 2 to 100 V and generate two 1-kHz, 100-V driving voltages at 2-nF capacitive loads.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据