4.7 Article

A Comprehensive Study on Magnetoelectric Transducers for Wireless Power Transfer Using Low-Frequency Magnetic Fields

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TBCAS.2021.3118981

关键词

Transducers; Magnetostriction; Magnetic fields; Magnetic resonance; Magnetomechanical effects; Magnetoelectric effects; Coils; Biomedical implants; efficiency; inductive coils; low-frequency operation; magnetic field; magnetoelectric transducers; wireless power transfer

资金

  1. National Science Foundation (NSF) [ECCS-1904811]

向作者/读者索取更多资源

ME transducers, composed of layered magnetostrictive and piezoelectric materials, are more efficient than inductive coils in converting low-frequency magnetic fields into electric fields. This paper studies the impact of different design parameters on the performance of the ME transducer in wireless power transfer. Through modeling and measurements, the effects of size, DC bias magnetic field, loading, and operation frequency on resonance frequency and received power of the ME transducer are determined.
Magnetoelectric (ME) transducers, comprising of layered magnetostrictive and piezoelectric materials, are more efficient than inductive coils in converting low-frequency magnetic fields into electric fields, particularly in applications that require miniaturized devices such as biomedical implants. Therefore, ME transducers are an attractive candidate for wireless power transfer (WPT) using low-frequency magnetic fields, which are less harmful to the human body and can penetrate easily through different lossy media. The literature lacks a comprehensive study on the ME transducer as a power receiver in a WPT link. This paper studies the impact of different ME design parameters on the WPT link performance. An accurate analytical model of the ME transducer, operating in the longitudinal-transverse mode, is presented, describing both temporal and spatial deformations. Nine ME transducers with different sizes (ME volume: 5-150 mm(3)) were fabricated with Galfenol and PZT-5A as magnetostrictive and piezoelectric layers, respectively. Through the modeling and measurement of these ME transducers, the effects of the ME transducer dimension, DC bias magnetic field, loading (R-L), and operation frequency on the resonance frequency, quality factor, and received power (P-L) of the ME transducer are determined. In measurements, a 150 mm(3) ME transducer achieved > 10-fold higher P-L for a wide R-L range of 500 ohm to 1 M ohm at 95.5 kHz, compared to an optimized coil with comparable size and operation frequency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据