4.7 Article

Chemical-looping combustion in packed-fluidized beds: Experiments with random packings in bubbling bed

期刊

FUEL PROCESSING TECHNOLOGY
卷 222, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.fuproc.2021.106978

关键词

Bubbling fluidized bed; Packed-fluidized bed; Confined fluidization; Ilmenite; Oxygen carrier; Chemical-Looping Combustion

资金

  1. Swedish Energy Agency [46525-1]

向作者/读者索取更多资源

The study investigated chemical-looping combustion in a packed-fluidized bed reactor and found that fuel conversion is greatly influenced by oxygen carrier bed height and the type of packing used. Using different types of packing can significantly improve fuel conversion efficiency, with different packings yielding different effects.
Chemical-looping combustion (CLC) in packed-fluidized bed reactor was investigated. Experiments were carried out in a cylindrical laboratory-scale bubbling fluidized-bed reactor with an inner diameter of 78 mm and a hight of 1.27 m. Ilmenite concentrate particles in the size range 90-212 mu m was used as oxygen carrying fluidizing solid. Two different types of random packings were used: aluminum silicate balls (ASB) with a diameter of 12.7 mm and bulk density of 1439 kg/m(3) and 25 mm stainless steel thread saddles (RMSR) with bulk density of 204 kg/m(3). The superficial gas velocity was 0.3 m/s. The fuels were CO and CH4. The bed temperature was 840 degrees C for CO and 940 degrees C for CH4. The height of the packed bed was kept constant at 1 m. The fluidized oxygen carrier bed height was varied from 2 cm to 40 cm. Results showed that fuel conversion in packed-fluidized beds is highly dependent on oxygen carrier bed height and the nature of the packing. Packed-fluidized beds with RMSR packing resulted in a significant improvement in fuel conversion, compared to a bubbling bed with no packing. With 30-40 cm bed height, CO conversion was 99.5% with RMSR packing and 91-96% without packing. The corresponding numbers for CH4 were approximate to 84% and approximate to 78% Further, the RMSR packing has very high void factor (0.96). Thus, it should have limited effects on particle inventory, pressure drop and throughput. The most likely mechanism for improved fuel conversion is improved gas-solid mass transfer due to be reduced bubble size. The ASB packing has low void factor (0.43) and provided mixed results with respect to fuel conversion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Engineering, Chemical

Investigation of Hydrodynamics of High-Temperature Fluidized Beds by Pressure Fluctuations

Nasrin Nemati, Reza Zarghami, Navid Mostoufi

CHEMICAL ENGINEERING & TECHNOLOGY (2016)

Article Engineering, Chemical

Experimental Investigation of the Effect of Random Packings on Heat Transfer and Particle Segregation in Packed-Fluidized Bed

Nasrin Nemati, Pontus Andersson, Viktor Stenberg, Magnus Ryden

Summary: The study investigated the effects of different packings on heat transfer coefficient, pressure drop, and vertical segregation in a bubbling fluidized bed reactor. It was found that certain packings can enhance heat transfer efficiency, and reduce pressure drop and vertical segregation in the bed layer.

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH (2021)

Article Energy & Fuels

Chemical Looping Combustion in a Packed Fluidized Bed Reactor-Fundamental Modeling and Batch Experiments with Random Metal Packings

Nasrin Nemati, Yukari Tsuji, Tobias Mattisson, Magnus Ryden

Summary: This study investigated the conversion of gaseous fuels during chemical looping combustion (CLC) in a packed fluidized reactor. The use of packings was found to improve the fuel conversion by enhancing gas-solid mass transfer, mainly due to the reduced bubble size. The results were consistent for different fuels, packings, and bed heights.

ENERGY & FUELS (2022)

Article Energy & Fuels

Investigation of the hydrodynamics of packed-fluidized beds: Characterization of solids flux

Nasrin Nemati, Pablo Filiu Moreno, Magnus Ryden

Summary: This study investigates the impact of Aluminum Silicate Balls (ASB) random packing on solid flux in packed-fluidized beds. The interaction of different packing and bed particle sizes, as well as superficial gas velocity, was studied. Experiments were conducted in a cylindrical cold-flow reactor using silica sand as bed material. The results showed that large particle and packing sizes, as well as low gas velocity, resulted in high solid flux.
Correction Chemistry, Applied

Technical analysis of blending fusel to reduce carbon emission and pollution emission of diesel engine (vol 241, 107560, 2023)

Jia Liu, Juntong Dong, Xiaodan Li, Teng Xu, Zhenguo Li, Jeffrey Dankwa Ampah, Mubasher Ikram, Shihai Zhang, Chao Jin, Zhenlong Geng, Tianyun Sun, Haifeng Liu

FUEL PROCESSING TECHNOLOGY (2024)

Article Chemistry, Applied

Understanding the role of Ni-based single-atom alloys on the selective hydrodeoxygenation of bio-oils

Seba Alareeqi, Daniel Bahamon, Kyriaki Polychronopoulou, Lourdes F. Vega

Summary: This study explores the potential application of single-atom-alloy (SAA) catalysts in bio-oils hydrodeoxygenation refining using density functional theory (DFT) and microkinetic modeling. It establishes the relationships between stability, adsorptive properties, and activity structures for bio-oil derivatives, providing guidance for the synthesis of cost-effective SAA combinations.

FUEL PROCESSING TECHNOLOGY (2024)

Article Chemistry, Applied

Experimental and computational study on xylan pyrolysis: The pyrolysis mechanism of main branched monosaccharides

Bin Hu, Wen -Ming Zhang, Xue-Wen Guo, Ji Liu, Xiao Yang, Qiang Lu

Summary: This study explored the pyrolysis behaviors and mechanisms of different monosaccharides, including arabinose, galactose, galacturonic acid, and glucuronic acid. The roles of structural differences in these monosaccharides were analyzed, and it was found that glucuronic acid undergoes a special C-C bond breaking reaction during pyrolysis. The findings provide a deep understanding of the pyrolysis chemistry of hemicellulose and the role of different branches.

FUEL PROCESSING TECHNOLOGY (2024)

Review Chemistry, Applied

A review of hydrothermal carbonization of municipal sludge: Process conditions, physicochemical properties, methods coupling, energy balances and life cycle analyses

Youwei Zhi, Donghai Xu, Guanyu Jiang, Wanpeng Yang, Zhilin Chen, Peigao Duan, Jie Zhang

Summary: Hydrothermal carbonization (HTC) is an effective method for the harmless disposal of municipal sludge (MS) and offers potential applications for the obtained products. Optimizing reaction conditions, coupling with other waste materials, and combining different processes can improve the performance of HTC. Furthermore, HTC contributes to energy recovery and enhances the quality of life cycle assessment.

FUEL PROCESSING TECHNOLOGY (2024)

Article Chemistry, Applied

Integrated hydropyrolysis and vapor-phase hydrodeoxygenation process with Pd/Al2O3 for production of advanced oxygen-containing biofuels from cellulosic wastes

Jia Wang, Jianchun Jiang, Dongxian Li, Xianzhi Meng, Arthur J. Ragauskas

Summary: This study presents a scalable process for converting holocellulose and cellulosic wastes into advanced oxygen-containing biofuels with high furan, cyclic ketone, and ethanol content. By combining hydropyrolysis and vapor-phase hydrodeoxygenation using Pd/Al2O3 as a catalyst, the researchers achieved high yields and conversions. The integrated process holds great promise for biomass waste conversion into advanced biofuels.

FUEL PROCESSING TECHNOLOGY (2024)

Article Chemistry, Applied

A 3D computational study of the formation, growth and oxidation of soot particles in an optically accessible direct-injection spark-ignition engine using quadrature-based methods of moments

Florian Held, Jannis Reusch, Steffen Salenbauch, Christian Hasse

Summary: The accurate prediction and assessment of soot emissions in internal combustion engines are crucial for the development of sustainable powertrains. This study presents a detailed quadrature-based method of moments (QMOM) soot model coupled with a state-of-the-art flow solver for the simulation of gasoline engines. The model accurately describes the entire cause-and-effect chain of soot formation, growth and oxidation. Experimental validation and engine cycle simulations are used to identify the root cause of observed soot formation hotspots.

FUEL PROCESSING TECHNOLOGY (2024)