4.7 Article

Investigating temperature-driven water transport in cathode gas diffusion media of PEMFC with a non-isothermal, two-phase model

期刊

ENERGY CONVERSION AND MANAGEMENT
卷 248, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2021.114791

关键词

PEMFC; Water transport; Phase-change-induced flow; Non-isothermal

资金

  1. Project of National major scientific instrument and equipment development of China [2012YQ150256]

向作者/读者索取更多资源

The study focuses on the impact of temperature distribution on water transport in proton exchange membrane fuel cells through phase-change-induced flow. A non-isothermal, two-phase model is used to investigate water transport in different layers of the fuel cell. The results show that adjusting operating temperature and humidity can optimize water management and enhance the proportion of phase-change-induced flow in the porous layers.
Temperature distribution affects water transport in the porous medium layer of proton exchange membrane fuel cell (PEMFC) by phase-change-induced (PCI) flow. Thus, it is meaningful to reveal the role of PCI flow in removing water. In the present work, a 1-D, non-isothermal, two-phase model is employed to investigate the water transport in cathode gas diffusion layer (GDL) and micro porous layer (MPL). A dimensionless parameter Ts is also proposed to characterize the relation between PCI flow and capillary-driven (CD) flow. It is found that elevating the operating temperature (from 323.15 K to 363.15 K) can facilitate the PCI flow. The high anode and low cathode relative humidity (RHa90%/RHc50%) case contributes to the optimal output performance, corresponding to the largest Ts number and thermal strain. The thermal strain is insignificant compared with the swelling strain and the hygrothermal strain is influenced by the combination of output performance, water distribution and operating conditions. Furthermore, reducing water saturation (sc) at the GDL/gas channel (GC) interface (from 0.12 to 0.0) is conducive to enhancing the proportion of PCI flow in GDL and MPL. By adjusting the operating temperature, inlet RH and removing water at the GDL/GC interface in time enable enhancement of PCI flow and better performance. This work aims to provide a valuable reference for understanding the water transport process and optimizing water management.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据