4.4 Article

Reliable Finite-Difference Time-Domain Simulations of Reverberation Chambers by Using Equivalent Volumetric Losses

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TEMC.2016.2548520

关键词

Correlation; field statistics; finite-difference time-domain (FDTD); massively parallel computing; reverberation chamber (RC); volumetric losses; wall losses

向作者/读者索取更多资源

A numerical code based on the finite-difference time-domain technique is adopted to simulate a large reverberation chamber including the stirrers and the actual antenna presence in the frequency range 200-1000 MHz. The power of the code lies in the parallelization that allows the execution on high-performance computers. Chamber losses are accounted for by introducing virtual volumetric losses in the hypothesis of ideal conductor walls. The correction that arises from this choice which allows us to speed up the numerical computation is verified by a comparison with the case of wall losses implemented by assuming a finite conductivity. The analysis of the statistics of the chamber field, stirrer uncorrelated positions, Rician K-factor, backscatter, and field uniformity returns overlapping results for the two techniques. The analysis of the spatial field correlation within a spatial grid shows a correlation greater than 0.5 in the whole frequency range and for all stirrer angles, so confirming the equivalence of the two methods to manage losses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据