4.7 Article

Comparison of selenite and selenate in alleviation of drought stress in Nicotiana tabacum L.

期刊

CHEMOSPHERE
卷 287, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.132136

关键词

Sodium selenate; Sodium selenite; Antioxidant enzymes; Gene expression; Drought stress

资金

  1. Projects of Science and Technology Department, Henan Province, China [212102110066]
  2. Key Scientific Research Projects of colleges, Henan Province, China [20A210020]

向作者/读者索取更多资源

Exogenous selenium improves plant tolerance to abiotic stress, with both sodium selenite and sodium selenate showing positive effects on growth, photosynthesis, antioxidant system, osmotic substances, and stress-responsive gene expression under drought stress. Sodium selenate exhibited stronger promotion of root growth, photosynthetic pigments, and expression of stress-related genes compared to sodium selenite, indicating its potential as a more effective form of selenium for alleviating drought stress in plants.
Exogenous selenium (Se) improves the tolerance of plants to abiotic stress. However, the effects and mechanisms of different Se species on drought stress alleviation are poorly understood. This study aims to evaluate and compare the different effects and mechanisms of sodium selenate (Na2SeO4) and sodium selenite (Na2SeO3) on the growth, photosynthesis, antioxidant system, osmotic substances and stress-responsive gene expression of Nicotiana tabacum L. under drought stress. The results revealed that drought stress could significantly inhibit growth, whereas both Na2SeO4 and Na2SeO3 could significantly facilitate the growth of N. tabacum under drought stress. However, compared to Na2SeO3, Se application as Na2SeO4 induced a significant increase in the root tip number and number of bifurcations under drought stress. Furthermore, both Na2SeO4 and Na2SeO3 displayed higher levels of photosynthetic pigments, better photosynthesis, and higher concentrations of osmotic substances, antioxidant enzymes, and stress-responsive gene (NtCDPK2, NtP5CS, NtAREB and NtLEA5) expression than drought stress alone. However, the application of Na2SeO4 showed higher expression levels of the NtP5CS and NtAREB genes than Na2SeO3. Both Na2SeO4 and Na2SeO3 alleviated many of the deleterious effects of drought in leaves, which was achieved by reducing stress-induced lipid peroxidation (MDA) and H2O2 content by enhancing the activity of antioxidant enzymes, while Na2SeO4 application showed lower H2O2 and MDA content

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据