4.7 Article

Encapsulating Co9S8 nanocrystals into CNT-reinforced N-doped carbon nanofibers as a chainmail-like electrocatalyst for advanced Li-S batteries with high sulfur loading

期刊

CHEMICAL ENGINEERING JOURNAL
卷 423, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2021.130246

关键词

Co9S8 nanocrystals; Chainmail-like electrocatalyst; First-principle calculations; Li-S batteries; High sulfur loading

资金

  1. National Natural Science Foundation of China [51872098, 51922042]
  2. Fundamental Research Funds for the Central Universities, China [ZYGX2019J030, 2020ZYGXZR074]
  3. Sichuan Science and Technology Program [2020YJ0299]

向作者/读者索取更多资源

A new flexible electrode for Li-S batteries has been developed in this study, which can enhance the conversion efficiency of the sulfur electrochemical reaction and alleviate the polysulfides shuttle effect. The experimental results demonstrate that this electrode exhibits high initial discharge capacity, excellent rate capability, and good cycling stability.
Li-S batteries have been regarded as one promising candidate for next-generation energy storage systems, however, their practical implementations are severely hindered by the intractable polysulfides shuttle (PSS) effect and retarded conversion kinetics. Herein, a flexible electrode consisting of Co9S8 nanocrystals and CNTs encapsulated inside porous N-doped carbon nanofibers (NCF) (CNT@NC/Co9S8) was developed by electrospinning followed by in-situ sulfurization. The carbon nanofibers and embedded CNTs build a highly conductive network, while the Co9S8 and N dopant provide more polar sites for LiPSs confinement. This self-supported flexible electrode with a sulfur loading of 12.5 mg cm(-2) exhibits a high initial discharge capacity (1207.7 mAh g(-1) at 0.1C), excellent rate capability (831.2 mAh g(-1) at 4.0C) and cycling stability (765.5 mAh g(-1) with a capacity retention of 78.1% after 1000 cycles at 2.0C). Moreover, when the sulfur loading increases to 20 and 30 mg cm(-2), high capacities of 869.2 and 706.6 mAh g(-1) can still be obtained at 0.1C after 100 cycles, respectively. Theoretical analysis suggests that the sulfur cathode built on CNT@NC/Co9S8 is electrocatalytically active towards LiPSs redox with enhanced conversion dynamics, thus mitigating the detrimental PSS effect.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Physical

In-situ construction of Li4Ti5O12/rutile TiO2 heterostructured nanorods for robust and high-power lithium storage

Yiguang Zhou, Shuhao Xiao, Jinxia Jiang, Rui Wu, Xiaobin Niu, Jun Song Chen

Summary: The study shows that the Li4Ti5O12/rutile TiO2 heterostructured nanorods exhibit improved high-rate performance and capacity retention, thanks to the constructed interface between the two materials.

NANO RESEARCH (2023)

Article Engineering, Environmental

Homogeneously distributed heterostructured interfaces in rice panicle-like SbBi-Bi2Se3-Sb2Se3 nanowalls for robust sodium storage

Xinyan Li, Shuhao Xiao, Dengji Guo, Jinxia Jiang, Xiaobin Niu, Rui Wu, Taisong Pan, Jun Song Chen

Summary: This study presents a template-free electrodeposition method for the growth of SbBi-Se self-supported nanowall arrays on copper substrates. The resulting heterostructured material exhibits uniformly dispersed phases and interfaces, which facilitate sodium ion diffusion and electronic conduction. The material demonstrates enhanced high-rate performance and superior cyclic retention, making it a promising candidate for sodium-ion battery applications.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Chemistry, Physical

Renovating phase constitution and construction of Pt nanocubes for electrocatalysis of methanol oxidation via a solvothermal-induced strong metal-support interaction

Yi Wang, Zhaohong Li, Xingqun Zheng, Rui Wu, Jianfeng Song, Yulin Chen, Xinzhe Cao, Yao Nie

Summary: Strong metal-support interaction (SMSI) plays an important role in tuning catalytic behavior by facilitating migration of reducible oxides from the support onto loaded metal surfaces and alloying of the guest metal with the metal component in the support. However, the conventional high-temperature redox treatment for SMSI is limited in achieving simultaneous occurrence of oxide migration and alloying mechanisms, which restricts its application in electrocatalysis. In this study, a low-temperature solvothermal-induced SMSI is established in the CeCuOx/C supported Pt system, leading to the partial encapsulation of supported Pt by CeOx and the alloying of Cu2+ in the substrate with guest Pt. This encapsulation and alloying processes significantly improve the catalysis configuration and restructure the geometric/electronic state of interfacial Pt atoms, resulting in enhanced performance for methanol oxidation reaction (MOR).

APPLIED CATALYSIS B-ENVIRONMENTAL (2023)

Article Chemistry, Physical

Zinc-cobalt-bimetallic catalyst on three-dimensional ordered nitrogen-doped porous carbon for high-performance lithium-selenium batteries

Qi Zhou, Xueqiang Qi, Yiguang Zhou, Junyi Li, Jinxia Jiang, Hanchao Li, Xiaobin Niu, Rui Wu, Jun Song Chen

Summary: Lithium-selenium (Li-Se) batteries have attracted widely attention due to their high volume specific capacity and good electronic conductivity of selenium. However, the rapid capacity fading, high volume changes and shuttle effect of lithium polyselenides (LiPSes) limit its further application. In this study, a zinc-cobalt bimetallic catalysts on nitrogen-doped 3D ordered porous carbon (ZnCo-NC) was constructed and applied as cathode for Li-Se batteries, showing significantly improved performance compared to single-metal counterparts.

JOURNAL OF ALLOYS AND COMPOUNDS (2023)

Article Chemistry, Physical

Synergistic cooperation between atomically dispersed Zn and Fe on porous nitrogen-doped carbon for boosting oxygen reduction reaction

Chuang Fu, Xueqiang Qi, Lei Zhao, Tingting Yang, Qian Xue, Zhaozhao Zhu, Pei Xiong, Jinxia Jiang, Xuguang An, Haiyuan Chen, Jun Song Chen, Andreu Cabot, Rui Wu

Summary: A dual-atom catalyst, Zn/Fe-NC, is synthesized through pyrolysis of PVP coated on Fe-doped ZIF-8, and it shows outstanding activity for oxygen reduction reaction (ORR) with high half-wave potential, excellent stability, and resistance to methanol. Density functional theory calculation reveals that the ORR overpotential is only 0.282 V, and the down-shifted d band center of active Fe affected by Zn alleviates the adsorption of OH* intermediates, thus promoting the overall ORR electrocatalytic activity. Moreover, zinc-air batteries with Zn/Fe-NC catalyst as oxygen cathode demonstrate remarkable power density and specific capacity for practical applications.

APPLIED CATALYSIS B-ENVIRONMENTAL (2023)

Article Electrochemistry

NiS2 nanoparticles decorated hierarchical porous carbon for high-performance lithium-selenium batteries

Junyi Li, Dong Yan, Ying Wang, Rui Wu, Xiaobin Niu, Jinxia Jiang, Jiaqian Qin, Le Yu, Daniel John Blackwood, Jun Song Chen

Summary: In this study, a NiS2-HPC cathode catalyst was fabricated and applied in Li-Se batteries. The hierarchical porous structure can buffer the volume change during charge/discharge, while the NiS2 nanoparticles exhibit adsorption capabilities towards lithium polyselenides and promote the conversion of these intermediates. Therefore, the catalyst shows superior rate capacity and cycling stability.

ELECTROCHIMICA ACTA (2023)

Article Thermodynamics

A Cu/Ni alloy thin-film sensor integrated with current collector for in-situ monitoring of lithium-ion battery internal temperature by high-throughput selecting method

Xuan Ling, Qian Zhang, Yong Xiang, Jun Song Chen, Xiaoli Peng, Xiaoran Hu

Summary: A high-throughput selected thin-film resistance temperature detector (TFRTD) is proposed for real-time monitoring of the internal temperature of lithium-ion batteries. The TFRTD is integrated between the collectors of the pouch LIB and is compatible with the battery assembly process. The built-in TFRTD shows faster response and higher accuracy compared to external temperature sensors, allowing real-time monitoring of internal battery temperature under different current rates.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2023)

Article Materials Science, Multidisciplinary

Highly conductive S-doped FeSe2-xSx microsphere with high tap density for practical sodium storage

Shuhao Xiao, Jinxia Jiang, Ying Zhu, Jing Zhang, Hanchao Li, Rui Wu, Xiaobin Niu, Jiaqian Qin, Jun Song Chen

Summary: FeSe2-xSx microspheres were prepared by self-doping solvothermal method and gas phase selenization. S doping improved the Na adsorption and lowered the diffusion energy barrier, enhancing the electronic conductivity of FeSe2-xSx. The carbon-free nature of the microspheres resulted in a low specific surface area and high tap density, leading to a high initial columbic efficiency. Compared with pure FeSe2, FeSe2-xSx exhibited a high reversible capacity and enhanced rate performance. Additionally, FeSe2-xSx//NVP pouch cells achieved high energy and volumetric energy densities, demonstrating the potential applications of FeSe2-xSx microspheres.

ADVANCED POWDER MATERIALS (2023)

Article Chemistry, Multidisciplinary

Stabilizing highly active atomically dispersed NiN4Cl sites by Cl-doping for CO2 electroreduction

Zhao Li, Xueqiang Qi, Junjie Wang, Zhaozhao Zhu, Jinxia Jiang, Xiaobin Niu, Andreu Cabot, Jun Song Chen, Rui Wu

Summary: NiN4Cl-ClNC catalysts with atomically dispersed NiN4Cl active sites are prepared through a molten-salt-assisted pyrolysis strategy. The optimized catalyst shows excellent CO2 conversion activity and outstanding stability, delivering a high CO Faradaic efficiency of 98.7% and a remarkable CO partial current density of approximately 349.4 mA cm(-2) in flow-cell. The introduced axial Ni-Cl bond and ClC bond induce electronic delocalization, stabilizing Ni and facilitating the rate-determining step of COOH* formation.

SUSMAT (2023)

Article Physics, Applied

NiS2/FeS Heterostructured Nanoflowers for High-Performance Sodium Storage

Dong Yan, Shuhao Xiao, Xinyan Li, Jinxia Jiang, Qiyuan He, Hanchao Li, Jiaqian Qin, Rui Wu, Xiaobin Niu, Jun Song Chen

Summary: Transition metal sulfides have high potential for sodium storage, but their low conductivity and volume expansion affect their high-rate performance and cycling stability. In this work, a NiS2/FeS heterostructure was constructed by growing Ni-based layered double hydroxide nanosheets on Fe-based Prussian Blue nanocrystals followed by sulfurization. The resulting nanocomposite showed superior rate performance and cycle life compared to the heterostructure-free NiS2 and FeS.

ENERGY MATERIAL ADVANCES (2023)

Article Chemistry, Multidisciplinary

Formation of Hierarchical Zn/N-doped Carbon Hollow Nanofibers towards Dendrite-Free Zn Metal Anodes

Huan Yu, Haixin Yao, Yaqi Zheng, Dan Liu, Jun Song Chen, Yan Guo, Nian Wu Li, Le Yu

Summary: This study reports a freestanding host of hierarchical lotus root-like Zn/N-doped carbon hollow nanofibers-based paper decorated with interconnected Zn/N-doped carbon nanocages. This host exhibits a well-distributed metallic Zn and N-doped carbon species, which can reduce the nucleation overpotential and avoid the evolution of hydrogen bubbles. The experimental results demonstrate that this unique host has the ability to control Zn deposition and ensure stable cycling duration.

ADVANCED FUNCTIONAL MATERIALS (2023)

Article Thermodynamics

Nickel single-atom catalysts on porous carbon nanosheets for high-performance lithium-selenium batteries

Junyi Li, Jinxia Jiang, Yiguang Zhou, Mo Chen, Shuhao Xiao, Xiaobin Niu, Rui Wu, Le Yu, Daniel John Blackwood, Jun Song Chen

Summary: A catalyst of nickel single atoms/nitrogen-doped porous carbon nanosheets has been developed as an ideal host for selenium cathode in lithium-selenium batteries, which enhances the capacity and cycling stability of the battery.

ENERGY (2023)

Article Engineering, Environmental

A metal-phenolic network-assembled nanotrigger evokes lethal ferroptosis via self-supply loop-based cytotoxic reactions

Xinping Zhang, Yuxin Guo, Xiaoyang Liu, Shun-Yu Wu, Ya-Xuan Zhu, Shao-Zhe Wang, Qiu-Yi Duan, Ke-Fei Xu, Zi-Heng Li, Xiao-Yu Zhu, Guang-Yu Pan, Fu-Gen Wu

Summary: This study develops a nanotrigger HCFT for simultaneous photodynamic therapy and light-triggered ferroptosis therapy. The nanotrigger can relieve tumor hypoxia, induce enhanced photodynamic reaction, and facilitate the continuation of Fenton reaction, ultimately leading to lethal ferroptosis in tumor cells.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

XAS and DFT investigation of atomically dispersed Cu/Co alloyed Pt local structures under selective hydrogenation of acetylene to ethylene

Olumide Bolarinwa Ayodele, Toyin Daniel Shittu, Olayinka S. Togunwa, Dan Yu, Zhen-Yu Tian

Summary: This study focused on the semihydrogenation of acetylene in an ethylene-rich stream using two alloyed Pt catalysts PtCu and PtCo. The PtCu catalyst showed higher activity and ethylene yield compared to PtCo due to its higher unoccupied Pt d-orbital density. This indicates that alloying Pt with Cu is more promising for industrial relevant SHA catalyst.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

A multifunctional emitter with synergistical adjustment of rigidity and flexibility for high-performance data-recording and organic light-emitting devices with hot exciton channel

Guowei Chen, Wen-Cheng Chen, Yaozu Su, Ruicheng Wang, Jia-Ming Jin, Hui Liang, Bingxue Tan, Dehua Hu, Shaomin Ji, Hao-Li Zhang, Yanping Huo, Yuguang Ma

Summary: This study proposes an intramolecular dual-locking design for organic luminescent materials, achieving high luminescence efficiency and performance for deep-blue organic light-emitting diodes. The material also exhibits unique mechanochromic luminescence behavior and strong fatigue resistance.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Cobalt/nickel purification by solvent extraction with ionic liquids in millifluidic reactors: From single-channel to numbered-up configuration with solvent recycle

Joren van Stee, Gregory Hermans, Jinu Joseph John, Koen Binnemans, Tom Van Gerven

Summary: This work presents a continuous solvent extraction method for the separation of cobalt and nickel in a millifluidic system using Cyphos IL 101 (C101) as the extractant. The optimal conditions for extraction performance and solvent properties were determined by investigating the effects of channel length, flow rate, and temperature. The performance of a developed manifold structure was compared to a single-channel system, and excellent separation results were achieved. The continuous separation process using the manifold structure resulted in high purity cobalt and nickel products.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Environment-triggered nanoagent with programmed gas release performance for accelerating diabetic infected wound healing

Yan Xu, Jingai Jiang, Xinyi Lv, Hui Li, Dongliang Yang, Wenjun Wang, Yanling Hu, Longcai Liu, Xiaochen Dong, Yu Cai

Summary: A programmed gas release nanoparticle was developed to address the challenges in treating diabetic infected wounds. It effectively removes drug-resistant pathogens and remodels the wound microenvironment using NO and H2S. The nanoparticle can eliminate bacteria and promote wound healing through antibacterial and anti-inflammatory effects.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Synergistic dopa-reinforced fluid hydrosol as highly efficient coal dust suppressant

Tong Xia, Zhilin Xi, Lianquan Suo, Chen Wang

Summary: This study investigated a highly efficient coal dust suppressant with low initial viscosity and high adhesion-solidification properties. The results demonstrated that the dust suppressant formed a network of multiple hydrogen bonding cross-linking and achieved effective adhesion and solidification of coal dust through various chemical reactions.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

First principle-based rate equation theory for the carbonation kinetics of CaO with CO2 in calcium looping

Jinzhi Cai, Zhenshan Li

Summary: A density functional theory-based rate equation was developed to predict the gas-solid reaction kinetics of CaO carbonation with CO2 in calcium looping. The negative activation energy of CaO carbonation close to equilibrium was accurately predicted through experimental validation.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Significant enhancement of high-temperature capacitive energy storage in dielectric films through surface self-assembly of BNNS coatings

Jianxiong Chen, Fuhao Ren, Ningning Yin, Jie Mao

Summary: This study presents an economically efficient and easily implementable surface modification approach to enhance the high-temperature electrical insulation and energy storage performance of polymer dielectrics. The self-assembly of high-insulation-performance boron nitride nanosheets (BNNS) on the film surface through electrostatic interactions effectively impedes charge injection from electrodes while promoting charge dissipation and heat transfer.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Medium entropy metal oxide induced *OH species targeted transfer strategy for efficient polyethylene terephthalate plastic recycling

Zijian Li, Zhaohui Yang, Shao Wang, Hongxia Luo, Zhimin Xue, Zhenghui Liu, Tiancheng Mu

Summary: This study reports a strategy for upgrading polyester plastics into value-added chemicals using electrocatalytic methods. By inducing the targeted transfer of *OH species, polyethylene terephthalate was successfully upgraded into potassium diformate with high purity. This work not only develops an excellent electrocatalyst, but also provides guidance for the design of medium entropy metal oxides.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

A novel environmental friendly and sustainable process for textile dyeing with sulphur dyes for cleaner production

Navneet Singh Shekhawat, Surendra Kumar Patra, Ashok Kumar Patra, Bamaprasad Bag

Summary: This study primarily focuses on developing a sulphur dyeing process at room temperature using bacterial Lysate, which is environmentally friendly, energy and cost effective, and sustainable. The process shows promising improvements in dye uptake and fastness properties.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Highly efficient and sustainable cationic polyvinyl chloride nanofibrous membranes for removal of E. coli and Cr (VI): Filtration and adsorption

Dengjia Shen, Hongyang Ma, Madani Khan, Benjamin S. Hsiao

Summary: This study developed cationic PVC nanofibrous membranes with high filtration and adsorption capability for the removal of bacteria and hexavalent chromium ions from wastewater. The membranes demonstrated remarkable performance in terms of filtration efficiency and maximum adsorption capacity. Additionally, modified nanofibrous membranes were produced using recycled materials and showed excellent retention rates in dynamic adsorption processes.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Concerted proton-coupled electron transfer promotes NiCoP nanowire arrays for efficient overall water splitting at industrial-level current density

Xiaoyan Wang, Zhikun Wang, Ben Jia, Chunling Li, Shuangqing Sun, Songqing Hu

Summary: Inspired by photosystem II, self-supported Fe-doped NiCoP nanowire arrays modified with carboxylate were constructed to boost industrial-level overall water splitting by employing the concerted proton-coupled electron transfer mechanism. The introduction of Fe and carboxyl ligand led to improved catalytic activity for HER and OER, and NCFCP@NF exhibited long-term durability for overall water splitting.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Self-limiting growth of thin dense LTA membranes boosts H2 gas separation performance

Pengyao Yu, Ge Yang, Yongming Chai, Lubomira Tosheva, Chunzheng Wang, Heqing Jiang, Chenguang Liu, Hailing Guo

Summary: Thin LTA zeolite membranes were prepared through secondary growth of nano LTA seeds in a highly reactive gel, resulting in membranes with superior permeability and selectivity in gas separation applications.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Prediction of phosphate adsorption amount, capacity and kinetics via machine learning: A generally physical-based process and proposed strategy of using descriptive text messages to enrich datasets

Baiqin Zhou, Huiping Li, Ziyu Wang, Hui Huang, Yujun Wang, Ruichun Yang, Ranran Huo, Xiaoyan Xu, Ting Zhou, Xiaochen Dong

Summary: The use of machine learning to predict the performance of specific adsorbents in phosphate adsorption shows great promise in saving time and revealing underlying mechanisms. However, the small size of the dataset and insufficient detailed information limits the model training process and the accuracy of results. To address this, the study employs a fuzzing strategy that replaces detailed numeric information with descriptive text messages on the physiochemical properties of adsorbents. This strategy allows the recovery of discarded samples with limited information, leading to accurate prediction of adsorption amount, capacity, and kinetics. The study also finds that phosphate uptake by adsorbents is generally through physisorption, with some involvement of chemisorption. The framework established in this study provides a practical approach for quickly predicting phosphate adsorption performance in urgent scenarios, using easily accessible information.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Absorption of hydrophobic volatile organic compounds in renewable vegetable oils and esterified fatty acids: Determination of gas-liquid partitioning coefficients as a function of temperature

Paula Alejandra Lamprea Pineda, Joren Bruneel, Kristof Demeestere, Lisa Deraedt, Tex Goetschalckx, Herman Van Langenhove, Christophe Walgraeve

Summary: This study evaluates the use of four esterified fatty acids and three vegetable oils as absorption liquids for hydrophobic VOCs. The experimental results show that isopropyl myristate is the most efficient liquid for absorbing the target VOCs.

CHEMICAL ENGINEERING JOURNAL (2024)