4.7 Article

Obstructing interfacial reaction between NiOx and perovskite to enable efficient and stable inverted perovskite solar cells

期刊

CHEMICAL ENGINEERING JOURNAL
卷 426, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2021.131357

关键词

Perovskite solar cells; Nickel oxide; Interfacial redox reaction; Hole extraction; Stability

资金

  1. National Natural Science Foundation of China (NSFC) [52063019, 51973088, U20A20128, 51833004]
  2. Double Thousand Plan Science and Technology Innovation High-end Talent Project of Jiangxi Province [jxsq2019201107]

向作者/读者索取更多资源

In NiOx-based perovskite solar cells, the introduction of a modifier layer, SaC-100, was found to suppress the detrimental reaction between Ni3+ and MAI, improving conductivity, reducing interfacial defects, optimizing interfacial energy level alignment, and enhancing device stability and power conversion efficiency.
In NiOx-based perovskite solar cells (PVSCs), the interfacial redox reaction between Ni3+ (on the surface of NiOx) and A-site cation salt (MAI in perovskite precursor solution) is invariably ignored. This adverse reaction will generate PbI2-rich hole extraction barriers at the NiOx-perovskite interface, which limits hole transmission and increases charge recombination, thus resulting in open-circuit voltage (Voc) loss. Furthermore, it will accelerate perovskite degradation by deprotonating the precursor amine and oxidizing iodide to interstitial iodine, which induces the severe instability of devices. Herein, a physical separation strategy by introducing a modifier layer to obstruct the detrimental reaction is explored. The results demonstrate that the trimethylolpropane tris(2-methyl1-aziridinepropionate) (SaC-100) depositing onto NiOx can suppress the reaction between Ni3+ and MAI to endow the improvement of conductivity and reduction of interfacial defects, thus reducing Voc loss and enhancing device stability. Moreover, the interfacial energy level alignment and the morphology of perovskite are also optimized. As a result, the PVSCs device based on NiOx/SaC-100 presents the best power conversion efficiency (PCE) of 20.21% with a superior Voc value of 1.12 V. Furthermore, the device shows better light and thermal stability because of the hindering effect and defect passivation effect of SaC-100.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据