4.7 Article

Genomewide transcriptional response of Escherichia coli O157:H7 to norepinephrine

期刊

BMC GENOMICS
卷 23, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12864-021-08167-z

关键词

O157; Norepinephrine; Acid resistance; Two-component signaling pathways; Adherence

资金

  1. USDA, ARS CRIS funds

向作者/读者索取更多资源

Escherichia coli O157:H7 can use chemical signals produced by the host and intestinal microbes to survive and colonize in the gastrointestinal environment. Norepinephrine (NE) can induce the expression of genes related to swimming motility, acid resistance, and adherence to epithelial cells in E. coli O157:H7. The presence of NE has a significant impact on the virulence, stress response, and metabolic pathways of E. coli O157:H7.
Background Chemical signaling between a mammalian host and intestinal microbes is health and maintenance of 'healthy' intestinal microbiota. Escherichia coli O157:H7 can hijack host- and microbiota-produced chemical signals for survival in a harsh and nutritionally competitive gastrointestinal environment and for intestinal colonization. Norepinephrine (NE) produced by sympathetic neurons of the enteric nervous system has been shown in vitro to induce expression of genes controlling E. coli O157:H7 swimming motility, acid resistance, and adherence to epithelial cells. A previous study used a microarray approach to identify differentially expressed genes in E. coli O157:H7 strain EDL933 in response to NE. To elucidate a comprehensive transcriptional response to NE, we performed RNA-Seq on rRNA-depleted RNA of E. coli O157:H7 strain NADC 6564, an isolate of a foodborne E. coli O157:H7 strain 86-24. The reads generated by RNA-Seq were mapped to NADC 6564 genome using HiSat2. The mapped reads were quantified by htseq-count against the genome of strain NADC 6564. The differentially expressed genes were identified by analyzing quantified reads by DESeq2. Results Of the 585 differentially expressed genes (>= 2.0-fold; p < 0.05), many encoded pathways promoting ability of E. coli O157:H7 strain NADC 6564 to colonize intestines of carrier animals and to produce disease in an incidental human host through increased adherence to epithelial cells and production of Shiga toxins. In addition, NE exposure also induced the expression of genes encoding pathways conferring prolonged survival at extreme acidity, controlling influx/efflux of specific nutrients/metabolites, and modulating tolerance to various stressors. A correlation was also observed between the EvgS/EvgA signal transduction system and the ability of bacterial cells to survive exposure to high acidity for several hours. Many genes involved in nitrogen, sulfur, and amino acid uptake were upregulated while genes linked to iron (Fe3+) acquisition and transport were downregulated. Conclusion The availability of physiological levels of NE in gastrointestinal tract could serve as an important cue for E. coli O157:H7 to engineer its virulence, stress, and metabolic pathways for colonization in reservoir animals, such as cattle, causing illness in humans, and surviving outside of a host.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据