4.8 Article

Biological remediation technologies for dyes and heavy metals in wastewater treatment: New insight

期刊

BIORESOURCE TECHNOLOGY
卷 343, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2021.126154

关键词

Wastewater treatment; Biological methods; Dyes; Heavy metals

资金

  1. NPIU, MHRD India [1-5764058221]
  2. Scotland's Rural College (SRUC) , UK

向作者/读者索取更多资源

Biologically based techniques offer effective and environmentally friendly solutions to wastewater contaminated with dyes and heavy metals, with ongoing advancements and potential to further revolutionize water purification applications in the future.
The pollution of the environment caused by dyes and heavy metals emitted by industries has become a worldwide problem. The development of efficient, environmentally acceptable, and cost-effective methods of wastewater treatment containing dyes and heavy metals is critical. Biologically based techniques for treating effluents are fascinating since they provide several benefits over standard treatment methods. This review assesses the most recent developments in the use of biological based techniques to remove dyes and heavy metals from wastewater. The remediation of dyes and heavy metals by diverse microorganisms such as algae, bacteria, fungi and enzymes are depicted in detail. Ongoing biological method's advances, scientific prospects, problems, and the future prognosis are all highlighted. This review is useful for gaining a better integrated view of biological based wastewater treatment and for speeding future research on the function of biological methods in water purification applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Thermodynamics

Enhanced Recovery of Light Oil by using Combustion Tube: An Experimental Analysis

Bidhan C. Ruidas, Dan Bahadur Pal, Sumit Kumar Jana

Summary: This article presents a study on the in situ combustion of crude oil in porous media, utilizing experimental and analytical methods to derive an overall reaction stoichiometry. The findings contribute to the understanding of the combustion process and provide a theoretical basis for further research on crude oil combustion.

COMBUSTION SCIENCE AND TECHNOLOGY (2023)

Article Plant Sciences

Valorisation of algal biomass to value-added metabolites: emerging trends and opportunities

V. S. Uma, Zeba Usmani, Minaxi Sharma, Deepti Diwan, Monika Sharma, Miao Guo, Maria G. Tuohy, Charalampos Makatsoris, Xiaobin Zhao, Vijay Kumar Thakur, Vijai Kumar Gupta

Summary: Algal biomass has great potential for sustainable production of various value-added compounds and products. Efficient valorization methods and biorefining channels are essential to enhance the commercial value of algal metabolites. Algal extracts are ideal sources of biotechnologically viable compounds. Emerging technologies in biomass valorization help reduce the cost burden of large-scale operations. Comprehensive extraction of multi-algal product biorefineries is envisioned to enhance the economic feasibility of algal products in the global market.

PHYTOCHEMISTRY REVIEWS (2023)

Review Chemistry, Analytical

Sustainable approaches towards green synthesis of TiO2 nanomaterials and their applications in photocatalysis-mediated sensing to monitor environmental pollution

Tripti Singh, Shalini Sharma, Rajeev Singh, Dan Bahadur Pal, Irfan Ahmad, Mohammad Mahtab Alam, Nand Lal Singh, Manish Srivastava, Neha Srivastava

Summary: This review summarizes the fundamental processes and mechanisms of green synthesis approaches for TiO2 nanoparticles, with a focus on exploring the potential of using plants and microbes for preparing TiO2 nanoparticles and the role of TiO2-based nanomaterials in designing sensing platforms.

LUMINESCENCE (2023)

Review Biotechnology & Applied Microbiology

Sustainable utilization of fruit and vegetable waste bioresources for bioplastics production

Liang Gong, Ajit Kumar Passari, Chunxiao Yin, Vijay Kumar Thakur, John Newbold, William Clark, Yueming Jiang, Shanmugam Kumar, Vijai Kumar Gupta

Summary: Nowadays, the increasing production, use, and disposal of plastic products is a major environmental issue. The presence of plastic particles and other impurities in the food supply chain poses significant health risks to humans, animals, and the environment. Biodegradable plastics aim to create a more sustainable and eco-friendly world. This article discusses the critical issues that need to be addressed for the commercial viability of bioplastic production.

CRITICAL REVIEWS IN BIOTECHNOLOGY (2023)

Review Biotechnology & Applied Microbiology

Attenuation of Hyperlipidemia by Medicinal Formulations of Emblica officinalis Synergized with Nanotechnological Approaches

Puttasiddaiah Rachitha, Krupashree Krishnaswamy, Renal Antoinette Lazar, Vijai Kumar Gupta, Baskaran Stephen Inbaraj, Vinay Basavegowda Raghavendra, Minaxi Sharma, Kandi Sridhar

Summary: The ayurvedic herb Emblica officinalis has great therapeutic and nutritional importance. It is used in Indian medicine for treating various illnesses and has been found to have hepatoprotective, immunomodulatory, antimicrobial, radioprotective, and hyperlipidemic effects. Nanoencapsulation technology can enhance the therapeutic activities and bioaccessibility of Emblica officinalis.

BIOENGINEERING-BASEL (2023)

Article Biochemistry & Molecular Biology

Coconut waste valorization to produce biochar catalyst and its application in cellulose-degrading enzymes production via SSF

Mohd Saeed, Akbar Mohammad, Pardeep Singh, Basant Lal, Muath Suliman, Mohammad Y. Alshahrani, Minaxi Sharma

Summary: Solid waste management and waste valorization are important global concerns. In this study, coconut waste was utilized to produce biochar as a catalyst for fungal enzyme production in solid-state fermentation. The biochar was prepared via a calcination process and characterized using various techniques. The maximum enzyme production of 92 IU/gds BGL was achieved using a concentration of 2.5 mg biochar-catalyst at 40 degrees C in 72 hours.

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES (2023)

Article Biochemistry & Molecular Biology

Bacterial cellulase production via co-fermentation of paddy straw and Litchi waste and its stability assessment in the presence of Zn-Mg mixed-phase hydroxide-based nanocomposite derived from Litchi chinensis seeds

Mohammed Asiri, Tripti Singh, Akbar Mohammad, Amer Al Ali, Abdulaziz Alqahtani, Mohd Saeed, Manish Srivastava

Summary: Co-fermentation using co-cultured bacterial microorganisms is a promising technique for enzyme production in solid-state fermentation (SSF). The addition of nanomaterials, such as a Zn-Mg hydroxide-based nano-composite, can further enhance enzyme production. In this study, endoglucanase (EG) production was explored using a co-culture system of Bacillus subtilis and Serratia marcescens in SSF with the presence of a Zn-Mg hydroxide-based nanocatalyst. The optimized condition resulted in a 1.33-fold increase in EG enzyme production compared to the control, and the nanocatalyst showed stability for 135 minutes at 38 degrees C.

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES (2023)

Article Electrochemistry

Flexible Electrochemical Sensor for Hydrogen Peroxide Detection by Employing WO3/g-C3N4 Nanostructures

Akbar Mohammad, Amer H. Asseri, Mohammad Imran Khan, Taeho Yoon

Summary: This paper describes the fabrication of WO3/g-C3N4 and its use in a flexible carbon cloth-based nonenzymatic detection of hydrogen peroxide (H2O2). The WO3/g-C3N4 was prepared using a hydrothermal method and characterized using various techniques. The electrode modified with WO3/g-C3N4 demonstrated strong electrocatalytic activity for the detection of H2O2, suggesting its potential in the development of electrochemical sensors.

JOURNAL OF THE ELECTROCHEMICAL SOCIETY (2023)

Article Biochemistry & Molecular Biology

Sustainable Phenylalanine-Derived SAILs for Solubilization of Polycyclic Aromatic Hydrocarbons

Illia V. V. Kapitanov, Surya M. M. Sudheer, Toshikee Yadav, Kallol K. K. Ghosh, Nicholas Gathergood, Vijai K. K. Gupta, Yevgen Karpichev

Summary: The solubilization capacity of sustainable phenylalanine-derived surface-active ionic liquids (SAILs) towards polycyclic aromatic hydrocarbons (PAHs) was evaluated and compared with a conventional cationic surfactant, CTABr. The SAILs showed increased solubilization capacity with longer alkyl chain length, comparable to CTABr for certain SAIL types. The phenylalanine-derived SAILs also had the advantage of enzymatically cleaving ester and amide bonds under mild conditions for in situ separation of PAHs.

MOLECULES (2023)

Article Green & Sustainable Science & Technology

Turning hazardous volatile matter compounds into fuel by catalytic steam reforming: An evolutionary machine learning approach

Alireza Shafizadeh, Hossein Shahbeik, Mohammad Hossein Nadian, Vijai Kumar Gupta, Abdul-Sattar Nizami, Su Shiung Lam, Wanxi Peng, Junting Pan, Meisam Tabatabaei, Mortaza Aghbashlo

Summary: This study develops a machine learning-based research framework for modeling, understanding, and optimizing the catalytic steam reforming of volatile matter compounds. Chemical/ textural analyses are used to obtain input features, and ensemble machine learning provides the best prediction performance for toluene conversion and product distribution. The framework can expedite the search for optimal catalyst characteristics and reaction conditions.

JOURNAL OF CLEANER PRODUCTION (2023)

Review Green & Sustainable Science & Technology

Using nanocatalysts to upgrade pyrolysis bio-oil: A critical review

Hossein Shahbeik, Alireza Shafizadeh, Vijai Kumar Gupta, Su Shiung Lam, Hajar Rastegari, Wanxi Peng, Junting Pan, Meisam Tabatabaei, Mortaza Aghbashlo

Summary: The unfavorable properties of biomass pyrolysis bio-oil require physical/thermochemical methods to enhance its quality. Nanotechnology offers potential solutions to overcome the drawbacks of conventional catalysts used in bio-oil upgrading. This article provides a comprehensive overview of the application of nanocatalysts in bio-oil upgrading, including their mechanisms and effects on important operating parameters. Nanocatalysts have been shown to yield higher bio-oil quality and have advantages over bulk catalysts. However, more research and development are needed before nanocatalysts can be fully realized in practical applications.

JOURNAL OF CLEANER PRODUCTION (2023)

Article Green & Sustainable Science & Technology

Product diversification to boost the sustainability of the shrimp processing industry: The case of shrimp-waste driven chitosan-based food Pickering emulsion stabilizers

Yadong Yang, Lila Yazdani, Mortaza Aghbashlo, Vijai Kumar Gupta, Junting Pan, Meisam Tabatabaei, Ahmad Rajaei

Summary: This study aimed to increase the commercial value of shrimp shell waste by using chitosan extracted from these wastes as a food emulsion stabilizer. The findings showed that the stabilizer developed from shrimp shell waste is suitable for stabilizing emulsions containing more polar oils with less degree of unsaturation.

JOURNAL OF CLEANER PRODUCTION (2023)

Article Green & Sustainable Science & Technology

A meta-omics approach to explore the biofuel-producing enzyme potential from extreme environmental conditions

Sangita Dixit, Kalpana Sahoo, Mahendra Gaur, Rajesh Kumar Sahoo, Suchanda Dey, Vijai Kumar Gupta, Enketeswara Subudhi

Summary: This study explores enzymes in a carbohydrate-contaminated unique environment at Deulajhari hot spring using a multi-omics approach. The study identifies a diverse range of potential lignocellulose-digesting enzymes and highlights their significant potential in industrial-scale biofuel production.

RENEWABLE & SUSTAINABLE ENERGY REVIEWS (2023)

Article Engineering, Environmental

MoS2-based hetero-nanostructures for photocatalytic, photoelectrocatalytic and piezocatalytic remediation of hazardous pharmaceuticals

Nisha Oad, Prakash Chandra, Akbar Mohammad, Brijesh Tripathi, Taeho Yoon

Summary: The increase in global consumption of pharmaceutical compounds has led to economic burden and environmental pollution. Conventional treatment techniques can remove these compounds, but MoS2-based heterojunction photocatalytic systems have attracted significant interest due to their unique features. The 2D structure of MoS2-based materials contributes to rapid and stable degradation of pharmaceutical compounds. However, more research is needed to improve the separation of charge carriers and explore the potential of MoS2 for large-scale application.

JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING (2023)

Article Energy & Fuels

Converting biowaste streams into energy-leveraging microwave assisted valorization technologies for enhanced conversion

Zeba Usmani, Minaxi Sharma, Manikant Tripathi, Abdul Sattar Nizami, Liang Gong, Munagala S. Reddy, Vijay Kumar Thakur, Vijai Kumar Gupta, Quang D. Nguyen

Summary: With concerns over fossil fuels and waste, there is a focus on finding alternate energy sources for environmental protection and sustainable development. Biomass waste has emerged as a new feedstock for renewable energy production, but it requires pretreatment and valorization strategies. Microwave heating is being explored as an alternative to conventional heating for its advantages. This review explores the application of microwaves as a pretreatment technique and addresses challenges and future research directions.

JOURNAL OF THE ENERGY INSTITUTE (2023)

Article Agricultural Engineering

Carbamazepine facilitated horizontal transfer of antibiotic resistance genes by enhancing microbial communication and aggregation

Yinping Xiang, Meiying Jia, Rui Xu, Jialu Xu, Lele He, Haihao Peng, Weimin Sun, Dongbo Wang, Weiping Xiong, Zhaohui Yang

Summary: This study investigated the impact of the non-antibiotic pharmaceutical carbamazepine on antibiotic resistance genes (ARGs) during anaerobic digestion. The results showed that carbamazepine induced the enrichment of ARGs and increased the abundance of bacteria carrying these genes. It also facilitated microbial aggregation and intercellular communication, leading to an increased frequency of ARGs transmission. Moreover, carbamazepine promoted the acquisition of ARGs by pathogens and elevated their overall abundance.

BIORESOURCE TECHNOLOGY (2024)

Review Agricultural Engineering

A review of microbial responses to biochar addition in anaerobic digestion system: Community, cellular and genetic level findings

Weixin Zhao, Tianyi Hu, Hao Ma, Dan Li, Qingliang Zhao, Junqiu Jiang, Liangliang Wei

Summary: This review summarizes the effects and potential mechanisms of biochar on microbial behavior in AD systems. The addition of biochar has been found to promote microbial colonization, alleviate stress, provide nutrients, and enhance enzyme activity. Future research directions include targeted design of biochar, in-depth study of microbial mechanisms, and improved models.

BIORESOURCE TECHNOLOGY (2024)

Review Agricultural Engineering

Advances in nitrogen removal and recovery technologies from reject water: Economic and environmental perspectives

Christina Karmann, Anna Magrova, Pavel Jenicek, Jan Bartacek, Vojtech Kouba

Summary: This review assesses nitrogen removal technologies in reject water treatment, highlighting the differences in environmental impacts and economic benefits. Partial nitritation-anammox shows potential for economic benefits and positive environmental outcomes when operated and controlled properly.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Layered double hydroxide loaded pinecone biochar as adsorbent for heavy metals and phosphate ion removal from water

Wei-Hao Huang, Ying-Ju Chang, Duu-Jong Lee

Summary: This study modified pinecone biochar with layered double hydroxide (LDH) to enhance its adsorption capacity for heavy metal and phosphate ions. The LDH-biochar showed significantly improved adsorption capacities for Pb2+ and phosphate, and a slight increase for Cu2+ and Co2+. The LDH layer enhanced the adsorption through various mechanisms.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Machine learning-based prediction of methane production from lignocellulosic wastes

Chao Song, Fanfan Cai, Shuang Yang, Ligong Wang, Guangqing Liu, Chang Chen

Summary: This paper developed a machine learning model to predict the biochemical methane potential during anaerobic digestion. Model analysis identified lignin content, organic loading, and nitrogen content as key attributes for methane production prediction. For feedstocks with high cellulose content, early methane production is lower but can be improved by prolonging digestion time. Moreover, lignin content exceeding a certain value significantly inhibits methane production.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Engineering of Yarrowia lipolytica as a platform strain for producing adipic acid from renewable resource

Sang Min Lee, Ju Young Lee, Ji-Sook Hahn, Seung-Ho Baek

Summary: This study successfully developed an efficient platform strain using Yarrowia lipolytica for the bioconversion of renewable resources into adipic acid, achieving a remarkable increase in production level.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Synergies of pH-induced calcium phosphate precipitation and magnetic separation for energy-efficient harvesting of freshwater microalgae

Sefkan Kendir, Matthias Franzreb

Summary: This study presents a novel approach using magnetic separation to efficiently harvest freshwater microalgae, Chlorella vulgaris. By combining pH-induced calcium phosphate precipitation with cheap natural magnetite microparticles, harvesting efficiencies up to 98% were achieved in the model medium.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Solvothermal liquefaction of orange peels into biocrude: An experimental investigation of biocrude yield and energy compositional dependency on process variables

Ishaq Kariim, Ji-Yeon Park, Wajahat Waheed Kazmi, Hulda Swai, In-Gu Lee, Thomas Kivevele

Summary: The impact of reaction temperature, residence time, and ethanol: acetone on the energy compositions and yield enhancement of biocrudes was investigated. The results showed that under appropriate conditions, biocrudes with high energy and low oxygen content can be obtained, indicating a high potential for utilization.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Enhancing nitrogen removal performance through intermittent aeration in continuous plug-flow anaerobic/aerobic/anoxic process treating low-strength municipal sewage

Xiyue Zhang, Xiyao Li, Liang Zhang, Yongzhen Peng

Summary: Intermittent aeration is an innovative approach to enhance nitrogen removal in low carbon-to-nitrogen ratio municipal sewage, providing an efficient strategy for the continuous plug-flow AOA process.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Mechanism of magnetite-assisted aerobic composting on the nitrogen cycle in pig manure

Xu Yang, Mahmoud Mazarji, Mengtong Li, Aohua Li, Ronghua Li, Zengqiang Zhang, Junting Pan

Summary: This study investigated the impact of magnetite on the nitrogen cycle of pig manure biostabilisation. The addition of magnetite increased N2O emissions and decreased NH3 emissions during composting. It also increased the total nitrogen content but should be considered for its significant increase in N2O emissions in engineering practice.

BIORESOURCE TECHNOLOGY (2024)

Review Agricultural Engineering

Recent advances in microalgal production, harvesting, prediction, optimization, and control strategies

Ty Shitanaka, Haylee Fujioka, Muzammil Khan, Manpreet Kaur, Zhi-Yan Du, Samir Kumar Khanal

Summary: The market value of microalgae has exponentially increased in the past two decades, thanks to their applications in various industries. However, the supply of high-value microalgal bioproducts is limited due to several factors, and strategies are being explored to overcome these limitations and improve microalgae production, thus increasing the availability of algal-derived bioproducts in the market.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Efficient supply with carbon dioxide from flue gas during large scale production of microalgae: A novel approach for bioenergy facades

Martin Kerner, Thorsten Wolff, Torsten Brinkmann

Summary: The efficiency of using enriched CO2 from flue gas for large-scale production of green microalgae has been studied. The results show that the use of membrane devices and static mixers can effectively improve the CO2 recovery rate and maintain the suitable pH and temperature during cultivation, achieving a more economical and sustainable microalgae production.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Carbon dioxide and methane as carbon source for the production of polyhydroxyalkanoates and concomitant carbon fixation

Rui Ma, Ji Li, Rd Tyagi, Xiaolei Zhang

Summary: This review summarizes the microorganisms capable of using CO2 and CH4 to produce PHAs, illustrating the production process, factors influencing it, and discussing optimization techniques. It identifies the challenges and future prospects for developing economically viable PHAs production using GHGs as a carbon source.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Contribution of zeolite to nitrogen retention in chicken manure and straw compost: Reduction of NH3 and N2O emissions and increase of nitrate

Bing Wang, Peng Zhang, Xu Guo, Xu Bao, Junjie Tian, Guomin Li, Jian Zhang

Summary: The addition of zeolite in the co-composting of chicken manure and straw significantly reduced the emissions of ammonia and N2O, and increased the nitrate content. Zeolite also promoted the abundance of nitrification genes and inhibited the expression of denitrification genes.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Exploring advanced phycoremediation strategies for resource recovery from secondary wastewater using a large scale photobioreactor

Rohit Dey, Franziska Ortiz Tena, Song Wang, Josef Martin Messmann, Christian Steinweg, Claudia Thomsen, Clemens Posten, Stefan Leu, Matthias S. Ullrich, Laurenz Thomsen

Summary: This study investigated the operation of a 1000L microalgae-based membrane photobioreactor system for continuous secondary wastewater treatment. The research focused on a green microalgae strain called Desmodesmus sp. The study aimed to understand key trends and optimization strategies by conducting experiments in both summer and winter seasons. The findings showed that maintaining low cell concentrations during periods of light inhibition was beneficial for nutrient uptake rates. Effective strategies for enhancing algae-based wastewater treatment included cell mass recycling and adjusting dilution rates based on light availability.

BIORESOURCE TECHNOLOGY (2024)