4.7 Article

A parametric modeling study of thermal barrier coatings in low-temperature combustion engines

期刊

APPLIED THERMAL ENGINEERING
卷 200, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2021.117687

关键词

Thermal barrier coatings; Cylinder insulation; Low-temperature combustion; Efficiency improvement; Thermodynamic modeling

向作者/读者索取更多资源

In-cylinder thermal barrier coatings (TBCs) can improve combustion efficiency, especially in low-temperature combustion scenarios. Thicker TBCs can enhance volumetric efficiency and reduce intake temperature requirements, but there is a limit to thickness. High surface temperature is directly related to improved efficiency in kinetically-controlled LTC.
In-cylinder thermal barrier coatings (TBCs) reduce heat transfer losses and increase thermal efficiency. It has been shown that thick TBCs negatively impact the performance of conventional combustion modes by degrading volumetric efficiency and increasing the propensity for end-gas knock. Low-temperature combustion (LTC) is an advanced combustion strategy that offers high efficiencies and low emissions. Due to the nature of kineticsdriven autoignition, LTC is fundamentally different from the conventional combustion modes, where the benefits and tradeoffs of thick TBCs need to be re-evaluated. Previous experimental studies showed the feasibility and the efficiency gains associated with a 2 mm thick TBC applied to the piston surface, as well as the reduction in the required intake temperature with no observable deterioration on the high load limit. However, the effects of TBCs and their independent thermophysical properties on LTC have not been systematically explored. It is necessary to perform a comprehensive study on the effects of TBC on LTCs from a fundamental thermodynamic perspective, which serves as the motivation for the current study. This study couples a 0D engine thermodynamic model to a 1D transient heat transfer model of the coating and piston. The model was first validated against the metal piston baseline, followed by validation against experimental data of the TBC cases at different engine loads. With confidence established in the model's fidelity, three parameters are investigated independently: thermal conductivity (k), coating thickness, and volumetric heat capacity (s). The results revealed that the volumetric efficiency actually increases by 7.4 percentage points with a thicker coating due to a reduction in heat transfer during the compression stroke, which allows for a lower intake temperature requirement to reach autoignition. However, there is a thickness limit before the intake temperature becomes impractically low. The results show that elevating surface temperature is directly proportional to higher efficiency. Therefore, the optimal coating configuration for kinetically-controlled LTC is a combination of the lowest k, thickest coating before reaching the limit, and the lowest s, where the low k and high thickness contribute the most thermal efficiency gains (4.1 percentage points) and increased exhaust enthalpy (5.7%).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据