4.8 Article

An interval decomposition-ensemble approach with data-characteristic-driven reconstruction for short-term load forecasting

期刊

APPLIED ENERGY
卷 306, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2021.117992

关键词

Short-term load forecasting; Bivariate empirical mode decomposition; Decomposition-ensemble approach; Reconstruction; Bayesian optimization; Long short-term memory network

资金

  1. National Natural Science Foundation of China [72101197, 71988101]
  2. Fundamental Research Funds for the Central Universities [SK2021007]

向作者/读者索取更多资源

Short-term load forecasting is crucial for power demand-side management and system planning. This study proposes a new learning approach which significantly improves the accuracy of load forecasting, showing potential in interval load forecasting.
Short-term load forecasting is crucial for power demand-side management and the planning of the power system. Considering the necessity of interval-valued time series modeling and forecasting for the power system, this study proposes an interval decomposition-reconstruction-ensemble learning approach to forecast interval-valued load, in terms of the concept of divide and conquer. First, bivariate empirical mode decomposition is applied to decompose the original interval-valued data into a finite number of bivariate modal components for extracting and identifying the fluctuation characteristics of data. Second, based on the complexity analysis of each bivariate modal component by multivariate multiscale permutation entropy, the components were reconstructed for capturing inner factors and reduce the accumulation of estimation errors. Third, long short-term memory is utilized to synchronously forecast the upper and the lower bounds of each bivariate component and optimized by the Bayesian optimization algorithm. Finally, generating the aggregated interval-valued output by ensemble the forecasting results of the upper and lower bounds of each component severally. The electric load of five states in Australia is used for verification, and the empirical results show that the forecasting accuracy of our proposed learning approach is significantly superior to single models and the decomposition-ensemble models without reconstruction. This indicates that our proposed learning approach appears to be a promising alternative for interval load forecasting.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据