4.8 Article

Streamline Sulfur Redox Reactions to Achieve Efficient Room-Temperature Sodium-Sulfur Batteries

期刊

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/anie.202200384

关键词

Cobalt; Electron Reservoir; Electron Transfer; Kinetics; Sodium-Sulfur Batteries

资金

  1. Australian Research Council (ARC) [DE170100928, DP170101467]
  2. ARC [DP200101249, DP210101389]

向作者/读者索取更多资源

It is crucial to regulate S activity dynamically for efficient and stable room-temperature sodium-sulfur (RT/Na-S) batteries. In this study, cobalt sulfide is used as an electron reservoir to enhance the activity of sulfur cathodes, and cobalt single atoms serve as double-end binding sites for stable S conversion. The rational construction of CoS2 electron reservoir enables the direct reduction of S to short-chain sodium polysulfides (Na2S4) through a streamlined redox path. Cobalt single atoms synergistically work with the electron reservoir to reinforce the streamlined redox path, immobilize in situ formed long-chain products, and catalyze their conversion, leading to high S utilization and sustainable cycling stability. The developed sulfur cathodes exhibit superior rate performance and high cycling capacity retention.
It is vital to dynamically regulate S activity to achieve efficient and stable room-temperature sodium-sulfur (RT/Na-S) batteries. Herein, we report using cobalt sulfide as an electron reservoir to enhance the activity of sulfur cathodes, and simultaneously combining with cobalt single atoms as double-end binding sites for a stable S conversion process. The rationally constructed CoS2 electron reservoir enables the straight reduction of S to short-chain sodium polysulfides (Na2S4) via a streamlined redox path through electron transfer. Meanwhile, cobalt single atoms synergistically work with the electron reservoir to reinforce the streamlined redox path, which immobilize in situ formed long-chain products and catalyze their conversion, thus realizing high S utilization and sustainable cycling stability. The as-developed sulfur cathodes exhibit a superior rate performance of 443 mAh g(-1) at 5 A g(-1) with a high cycling capacity retention of 80 % after 5000 cycles at 5 A g(-1).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据