4.2 Article

Osteoblasts-derived exosomes regulate osteoclast differentiation through miR-503-3p/Hpse axis

期刊

ACTA HISTOCHEMICA
卷 123, 期 7, 页码 -

出版社

ELSEVIER GMBH
DOI: 10.1016/j.acthis.2021.151790

关键词

Osteoblast; Osteoclast differentiation; Exosomes; miR-503-3p; Hpse

资金

  1. Social Development Science and Technology Special Project [KS18029]
  2. National Natural Science Foundation of China [82074456]
  3. Gusu Health Talent of Suzhou [GSWS2020090]

向作者/读者索取更多资源

MicroRNAs are involved in bone remodeling by regulating the balance of bone formation and resorption. Osteoblast-derived exosomes inhibit osteoclast differentiation through the miR-503-3p/Hpse axis, providing a new direction for the treatment of bone diseases.
MicroRNAs (miRNAs) are involved in bone remodeling by regulating the balance of bone formation and resorption. Increasing evidence has confirmed that the communication between osteoclast and osteoblast through secreting exosomes and transferring miRNAs. It has been reported that mineralized osteoblasts release exosomes containing more miR-503-3p. However, the roles and molecular mechanisms of osteoblast exosomesderived miR-503-3p in osteoclast differentiation remain elusive. Here, we isolated exosomes from the supernatant of osteoblasts and identified the exosome characterization through transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and western blot assay. In addition, we found that exosomes and miR-503-3p secreted by osteoblasts inhibited the differentiation of osteoclast progenitor cells. Meanwhile, we found that Hpse (heparanase gene) was a target gene of miR-503-3p and miR-503-3p inhibited the osteoclast differentiation through downregulating the expression of Hpse. In summary, our results demonstrated the roles and the mechanism of osteoblast-derived exosomes inhibited the osteoclast differentiation via miR-503-3p/Hpse axis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Cell Biology

BrdU does not induce hepatocellular damage in experimental Wistar rats

Abril Alondra Barrientos-Bonilla, Paola Belem Pensado-Guevara, Abraham Puga-Olguin, Rasajna Nadella, Aurora del Carmen Sanchez-Garcia, Laura Mireya Zavala-Flores, Arnulfo Villanueva-Olivo, Iliana Tamara Cibrian-Llanderal, Maria de Jesus Rovirosa-Hernandez, Daniel Hernandez-Baltazar

Summary: This study evaluated the impact of BrdU on liver function and found that multiple injections of BrdU did not induce hepatocellular damage.

ACTA HISTOCHEMICA (2024)

Article Cell Biology

Catalpol antagonizes LPS-mediated inflammation and promotes osteoblast differentiation through the miR-124-3p/DNMT3b/TRAF6 axis

Pan Zhang, Qun Feng, Wenxiao Chen, Xizhuang Bai

Summary: It was found that catalpol antagonizes LPS-mediated inflammation and suppressive osteoblast differentiation by inhibiting inflammation and promoting osteoblast differentiation. This finding contributes to a better understanding of the pathogenesis of osteoporosis.

ACTA HISTOCHEMICA (2024)