4.8 Article

Amyloid and Hydrogel Formation of a Peptide Sequence from a Coronavirus Spike Protein

期刊

ACS NANO
卷 16, 期 2, 页码 1857-1867

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.1c10658

关键词

amyloid; coronavirus; spike protein; nanotapes; aggregation; hydrogels

资金

  1. UKRI
  2. University of Reading
  3. EPSRC [EP/L020599/1]
  4. [MX-2345]
  5. [SM28659-1]
  6. EPSRC [EP/L020599/1] Funding Source: UKRI

向作者/读者索取更多资源

It has been demonstrated that a conserved coronavirus spike protein peptide can form amyloid structures, which has implications for the stability of the spike protein conformation and potential functional material applications.
We demonstrate that a conserved coronavirus spike protein peptide forms amyloid structures, differing from the native helical conformation and not predicted by amyloid aggregation algorithms. We investigate the conformation and aggregation of peptide RSAIEDLLFDKV, which is a sequence common to many animal and human coronavirus spike proteins. This sequence is part of a native alpha-helical S2 glycoprotein domain, close to and partly spanning the fusion sequence. This peptide aggregates into beta-sheet amyloid nanotape structures close to the calculated pI = 4.2, but forms disordered monomers at high and low pH. The beta-sheet conformation revealed by FTIR and circular dichroism (CD) spectroscopy leads to peptide nanotape structures, imaged using transmission electron microscopy (TEM) and probed by small-angle X-ray scattering (SAXS). The nanotapes comprise arginine-coated bilayers. A Congo red dye UV-vis assay is used to probe the aggregation of the peptide into amyloid structures, which enabled the determination of a critical aggregation concentration (CAC). This peptide also forms hydrogels under precisely defined conditions of pH and concentration, the rheological properties of which were probed. The observation of amyloid formation by a coronavirus spike has relevance to the stability of the spike protein conformation (or its destabilization via pH change), and the peptide may have potential utility as a functional material. Hydrogels formed by coronavirus peptides may also be of future interest in the development of slow-release systems, among other applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Biochemistry & Molecular Biology

Cell Adhesion Motif-Functionalized Lipopeptides: Nanostructure and Selective Myoblast Cytocompatibility

Elisabetta Rosa, Lucas de Mello, Valeria Castelletto, Mark L. Dallas, Antonella Accardo, Jani Seitsonen, Ian W. Hamley

Summary: This study investigates the conformation and self-assembly behavior of four lipopeptides, and examines their potential applications in tissue engineering based on cytocompatibility assessments. The results show that all four lipopeptides can self-assemble into nanostructures at specific concentrations. Furthermore, these lipopeptides demonstrate promising prospects in tissue engineering.

BIOMACROMOLECULES (2023)

Review Nanoscience & Nanotechnology

Self-Assembly, Bioactivity, and Nanomaterials Applications of Peptide Conjugates with Bulky Aromatic Terminal Groups

Ian W. Hamley

Summary: This review focuses on the self-assembly, structural and functional properties of peptide conjugates containing bulky terminal aromatic substituents, with a particular emphasis on bioactivity. The driving force for self-assembly comes from pi-stacking and hydrophobic interactions, as well as hydrogen bonding, electrostatics, and other forces between short peptides. The balance of these interactions leads to a propensity for self-assembly, even for single amino acid conjugates. The resulting molecules often form hydrogels built from beta-sheet fibrils, with applications in biomaterials, drug delivery, catalysis, and optoelectronics.

ACS APPLIED BIO MATERIALS (2023)

Article Chemistry, Multidisciplinary

Effect of Glycosylation on Self-Assembly of Lipid A Lipopolysaccharides in Aqueous Solutions

Valeria Castelletto, Jani Seitsonen, Ian W. W. Hamley

Summary: This study investigates the self-assembly behavior of two monodisperse lipid A derivatives based on bacterial LPS structures in water and compares them to native Escherichia coli LPS using small-angle X-ray scattering and cryogenic transmission electron microscopy. The critical aggregation concentration and conformation are characterized using fluorescence probe experiments and circular dichroism spectroscopy, respectively. The E. coli LPS forms wormlike micelles, while the synthetic analogues self-assemble into nanosheets or vesicles depending on the number of lipid chains and saccharide head groups. These findings can be rationalized based on the surfactant packing parameter.

LANGMUIR (2023)

Article Chemistry, Multidisciplinary

Histidine-Containing Amphiphilic Peptide-Based Non-Cytotoxic Hydrogelator with Antibacterial Activity and Sustainable Drug Release

Biswanath Hansda, Jhilam Majumder, Biplab Mondal, Akash Chatterjee, Subhadeep Das, Sourav Kumar, Ratan Gachhui, Valeria Castelletto, Ian W. Hamley, Prosenjit Sen, Arindam Banerjee

Summary: A histidine-based amphiphilic peptide (P) was discovered to form an injectable transparent hydrogel with inherent antibacterial property in phosphate buffer solution. The peptide self-assembles into a nanofibrillar network structure and exhibits efficient antibacterial activity against both Gram-positive and Gram-negative bacteria. The hydrogel can also encapsulate and selectively release drugs, making it a potential antibacterial and drug delivering agent.

LANGMUIR (2023)

Article Biochemistry & Molecular Biology

Self-Assembly and Cytocompatibility of Amino Acid Conjugates Containing a Novel Water-Soluble Aromatic Protecting Group

Valeria Castelletto, Lucas de Mello, Emerson Rodrigo da Silva, Jani Seitsonen, Ian W. Hamley

Summary: Considerable interest has been shown in peptides with the Fmoc protecting group, as it can promote self-assembly and has applications in cell culture biomaterials. New amino acid analogues with the Smoc protecting group have been developed for water-based peptide synthesis. Self-assembly of Smoc-Ala, Smoc-Phe, and Smoc-Arg occurs above the critical aggregation concentration (CAC) and forms nanosheet, nanoribbon, or nanotube structures. Smoc-amino acids show excellent biocompatibility and are taken up by fibroblast cells without cytotoxicity.

BIOMACROMOLECULES (2023)

Article Biochemistry & Molecular Biology

Tuning the Solution Self-Assembly of a Peptide-PEG (Polyethylene Glycol) Conjugate with & alpha;-Cyclodextrin

Valeria Castelletto, Radoslaw M. Kowalczyk, Jani Seitsonen, Ian W. Hamley

Summary: Cyclodextrins can modify the self-assembly behavior of peptide-polymer conjugates. In this study, α-cyclodextrin complexation with a specific conjugate resulted in the formation of free-floating nanosheets instead of β-sheet fibrils. The transition from fibrils to nanosheets was driven by an increase in the number of α-cyclodextrin molecules threaded onto the polymer chains.

CHEMBIOCHEM (2023)

Article Chemistry, Physical

DNA-templated self-assembly of bradykinin into bioactive nanofibrils

Thiago C. Lourenco, Lucas R. de Mello, Marcelo Y. Icimoto, Renata N. Bicev, Ian W. Hamley, Valeria Castelletto, Clovis R. Nakaie, Emerson R. da Silva

Summary: This study presents a strategy for fabricating highly ordered 1D nanostructures of Bradykinin (BK) using DNA fragments as a template for self-assembly. The nanoscale structure of BK-DNA complexes was revealed, showing the formation of ordered nanofibrils. The complexes retained the native bioactivity of BK and could induce a limited uptake of nucleotides by HEK-293t cells, which has not been previously reported.

SOFT MATTER (2023)

Article Chemistry, Physical

Self-assembled aggregates based on cationic amphiphilic peptides: structural insight

Elisabetta Rosa, Carlo Diaferia, Lucas De Mello, Jani Seitsonen, Ian W. Hamley, Antonella Accardo

Summary: Short and ultra-short peptides are now being used as building blocks for self-assembled materials, with peptide aggregation being influenced by the amino acids in the sequence as well as their ability to interact with each other. By modifying peptides with polymeric moieties, alkyl chains, or other organic molecules, further structural and functional properties can be achieved. In this study, we synthesized and investigated the aggregation behavior of peptide amphiphiles (PAs) containing cationic tetra- or hexa-peptides derivatized with an alkyl chain. These PAs were able to form highly ordered nanostructures and biocompatible hydrogels, showing potential for tissue engineering and diagnostic applications.

SOFT MATTER (2023)

Article Chemistry, Physical

Mpemba effect in crystallization of polybutene-1

Jinghua Liu, Jingqing Li, Binyuan Liu, Ian W. Hamley, Shichun Jiang

Summary: The Mpemba effect and its inverse can be explained by nonequilibrium thermodynamics. While changes of state in polymers are generally non-equilibrium processes, the Mpemba effect is rarely seen in their crystallization. Polybutene-1 (PB-1) has the lowest critical cooling rate among polyolefins and tends to maintain its original structure and properties in the melt. Experimental observations confirm the presence of the Mpemba effect in both the crystallization of PB-1 in form II and form I obtained at low melting temperatures.

SOFT MATTER (2023)

Article Chemistry, Physical

Effect of molar ratio and concentration on the rheological properties of two-component supramolecular hydrogels: tuning of the morphological and drug releasing behaviour

Biswanath Hansda, Biplab Mondal, Soumyajit Hazra, Krishna Sundar Das, Valeria Castelletto, Ian W. Hamley, Arindam Banerjee

Summary: Peptide-based multicomponent hydrogels offer tunable mechanical properties and physical characteristics, demonstrating good cell compatibility and sustained drug release capabilities, and have the potential to serve as scaffold materials for tissue engineering.

SOFT MATTER (2023)

暂无数据