4.5 Article

Meiotic recombination shapes precision of pedigree- and marker-based estimates of inbreeding

期刊

HEREDITY
卷 118, 期 3, 页码 239-248

出版社

SPRINGERNATURE
DOI: 10.1038/hdy.2016.95

关键词

-

资金

  1. Max Planck Society

向作者/读者索取更多资源

The proportion of an individual's genome that is identical by descent (GWIBD) can be estimated from pedigrees (inbreeding coefficient 'Pedigree F') or molecular markers ('Marker F'), but both estimators come with error. Assuming unrelated pedigree founders, Pedigree F is the expected proportion of GWIBD given a specific inbreeding constellation. Meiotic recombination introduces variation around that expectation (Mendelian noise) and related pedigree founders systematically bias Pedigree F downward. Marker F is an estimate of the actual proportion of GWIBD but it suffers from the sampling error of markers plus the error that occurs when a marker is homozygous without reflecting common ancestry (identical by state). We here show via simulation of a zebra finch and a human linkage map that three aspects of meiotic recombination (independent assortment of chromosomes, number of crossovers and their distribution along chromosomes) contribute to variation in GWIBD and thus the precision of Pedigree and Marker F. In zebra finches, where the genome contains large blocks that are rarely broken up by recombination, the Mendelian noise was large (nearly twofold larger s.d. values compared with humans) and Pedigree F thus less precise than in humans, where crossovers are distributed more uniformly along chromosomes. Effects of meiotic recombination on Marker F were reversed, such that the same number of molecular markers yielded more precise estimates of GWIBD in zebra finches than in humans. As a consequence, in species inheriting large blocks that rarely recombine, even small numbers of microsatellite markers will often be more informative about inbreeding and fitness than large pedigrees.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据