4.2 Article

Quartz grain microtextures illuminate Pliocene periglacial sand fluxes on the Antarctic continental margin

期刊

DEPOSITIONAL RECORD
卷 7, 期 3, 页码 564-581

出版社

WILEY
DOI: 10.1002/dep2.157

关键词

Antarctica; eolian; IRD; microtexture

类别

资金

  1. Division of Polar Programs [ANT 0838842, ANT 1743643]
  2. Division of Ocean Sciences [OCE 1060080]

向作者/读者索取更多资源

This study assesses the intensity shift of glacial processes and iceberg and sea-ice rafting during the Pliocene through the analysis of deep-sea sediments in the Ross Sea and on the Antarctic continental rise. The results highlight anomalies in high-latitude sediment fluxes during periods of ice retreat and the significant offshore sediment flux during Antarctic deglaciation, which has implications for nutrient supply in the Southern Ocean and potential high-latitude climate feedbacks under warmer climate states.
On high-latitude continental margins sediment is supplied from land to the deep sea through a variety of processes, including iceberg and sea-ice rafting, and bottom current transport. The accurate reconstruction of sediment fluxes from these sources through time is important in palaeoclimate reconstructions. The goal of this study was to assess a shift in the intensity of glacial processes, iceberg and sea-ice rafting during the Pliocene through an investigation of coarse sediment deposited at the AND-2A site in the Ross Sea and at International Ocean Discovery Program Site U1359 on the Antarctic continental rise. Terrigenous particle-size distributions and suites of quartz grain microtextures in the sand fraction of the deep-sea sediments were compared to those from Antarctic glaciomarine diamictites as a baseline for proximal glacial sediment in its source area. Using images acquired through Scanning Electron Microscopy, and following a quantitative approach, fewer immature and potentially glacially transported grains were found in Pliocene deep-sea sand fractions than in ice-contact sediments. Specifically, in the lower Pliocene interval silt and fine sand percentages are elevated, and microtextures in at least half of the sand fraction are inconsistent with a primary glacial origin. Larger numbers of chemically altered and abraded grains in the deep-sea sand fraction, along with microtextures that are diagnostic of periglacial environments, suggest a role for eolian sediment transport. These results highlight the anomalous nature of high-latitude sediment fluxes during prolonged periods of ice retreat. Furthermore, the identification of a significant offshore sediment flux during Antarctic deglaciation has implications for estimated nutrient supply to the Southern Ocean and the potential for high-latitude climate feedbacks under warmer climate states.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据