4.7 Article

A multiscale 3D chemotaxis assay reveals bacterial navigation mechanisms

期刊

COMMUNICATIONS BIOLOGY
卷 4, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s42003-021-02190-2

关键词

-

资金

  1. Rowland Institute at Harvard

向作者/读者索取更多资源

The researchers developed a multiscale 3D chemotaxis assay combining tracking of bacteria in 3D with microfluidic gradients. They found that surface effects can confound typical 2D chemotaxis assays and revealed that the bacterium Caulobacter crescentus breaks with the E. coli paradigm.
How motile bacteria navigate environmental chemical gradients has implications ranging from health to climate science, but the underlying behavioral mechanisms are unknown for most species. The well-studied navigation strategy of Escherichia coli forms a powerful paradigm that is widely assumed to translate to other bacterial species. This assumption is rarely tested because of a lack of techniques capable of bridging scales from individual navigation behavior to the resulting population-level chemotactic performance. Here, we present such a multiscale 3D chemotaxis assay by combining high-throughput 3D bacterial tracking with microfluidically created chemical gradients. Large datasets of 3D trajectories yield the statistical power required to assess chemotactic performance at the population level, while simultaneously resolving the underlying 3D navigation behavior for every individual. We demonstrate that surface effects confound typical 2D chemotaxis assays, and reveal that, contrary to previous reports, Caulobacter crescentus breaks with the E. coli paradigm. Grognot & Taute use a 3D bacterial tracking routine to study the chemotactic behavior of E. coli and C. crescentus in a 3D microfluidic assay. After validating their approach on the well-characterized E. coli model system, they reveal that the chemotactic mechanism of the freshwater bacterium C. crescentus breaks with the E. coli paradigm.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据