4.8 Article

Cellulose fibers-reinforced self-expanding porous composite with multiple hemostatic efficacy and shape adaptability for uncontrollable massive hemorrhage treatment

期刊

BIOACTIVE MATERIALS
卷 6, 期 7, 页码 2089-2104

出版社

KEAI PUBLISHING LTD
DOI: 10.1016/j.bioactmat.2020.12.014

关键词

Porous materials; Cellulose fibers; Self-expanding ability; Shape-adaptive; Hemostasis

资金

  1. National Natural Science Foundation of China [51773018, 51973018, 31700829]
  2. Key Research and Development Projects of People's Liberation Army [BWS17J036]

向作者/读者索取更多资源

This study introduces a self-expanding porous composite material (CMCP) based on CMC fibers and PVA for controlling lethal hemorrhage. The CMCP demonstrates excellent hemostatic efficacy and multiple hemostatic effects, while also adapting to different shapes and depths of wound cavities without falling off, accelerating hemostasis and protecting wound tissue effectively.
Uncontrollable hemorrhage leads to high mortality and thus effective bleeding control becomes increasingly important in the military field and civilian trauma arena. However, current hemostats not only present limitation when treating major bleeding, but also have various side effects. Here we report a self-expanding porous composites (CMCP) based on novel carboxymethyl cellulose (CMC) fibers and acetalized polyvinyl alcohol (PVA) for lethal hemorrhage control. The CMC fibers with uniform fibrous structure, high liquid absorption and procoagulant ability, are evenly interspersed inside the composite matrix. The obtained composites possess unique fiber-porous network, excellent absorption capacity, fast liquid-triggered self-expanding ability and robust fatigue resistance, and their physicochemical performance can be fine-tuned through varying the CMC content. In vitro tests show that the porous composite exhibits strong blood clotting ability, high adhesion to blood cells and protein, and the ability to activate platelet and the coagulation system. In vivo hemostatic evaluation further confirms that the CMCP presents high hemostatic efficacy and multiple hemostatic effects in swine femoral artery major hemorrhage model. Additionally, the CMCP will not fall off from the injury site, and is also easy to surgically remove from the wound cavity after the hemostasis. Importantly, results of CT tomography and 3D reconstruction indicate that CMCP can achieve shape adaptation to the surrounding tissues and the wound cavities with different depths and shapes, to accelerate hemostasis while protecting wound tissue and preventing infection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据