4.8 Article

Defective graphene coating-induced exposed interfaces on CoS nanosheets for high redox electrocatalysis in lithium-sulfur batteries

期刊

ENERGY STORAGE MATERIALS
卷 40, 期 -, 页码 358-367

出版社

ELSEVIER
DOI: 10.1016/j.ensm.2021.05.031

关键词

Li-S batteries; Interlayer; Defective graphene; CoS nanosheets; Synergistic effect

资金

  1. Natural Science Foundation of China [21676043, 21506028, 21706023]
  2. National Key Research and Development Program of China [2019YFE0119200]
  3. Science Fund for Creative Research Groups of the National Natural Science Foundation of China [22021005]
  4. China Postdoctoral Science Foundation [2018M631167, 2020101410101010261]
  5. Changjiang Scholars Program [T2012049]
  6. [2019J12SN68]

向作者/读者索取更多资源

In this study, a sandwich-structured host with 3D catalysis-conduction interfaces is proposed. The architecture enables fast electron and Li+ diffusion, strong adsorption of S/Li2Sx, and high-efficiency conversion. Experimental and theoretical characterization reveals that although graphene coating shields the activity of CoS nanosheets, exposed interfaces at defective sites exhibit strong LiPSs anchoring and high conversion efficiency.
Herein, we propose the construction of sandwich-structured hosts filled with continuous 3D catalysis-conduction interfaces. The RG@CoS@C-C-RG@CoS@C architecture enables fast electron and Li+ diffusion, strong adsorption of S/Li2Sx and high-efficiency conversion on two-sided RG@CoS surfaces. With detailed experimental and theoretical characterization, we reveal that although the conformal graphene coating largely shields the catalytic activity and adsorbing ability of CoS nanosheets, the exposed interfaces of CoS at the defective sites of the graphene coating exhibit especially strong lithium polysulfide (LiPSs) anchoring and high conversion efficiency, with high-flux Li+ and electron transfer from the circumjacent graphene coating and the buried carbon nanofibers. Furthermore, the exposed interfaces exhibit an effective decrease in Li2S decomposition by releasing Li+ onto the circumjacent graphene surface with a low Li+ diffusion barrier and anchoring the remaining Li-S bond on the exposed CoS interface with a high adsorption energy. The unique structure consisting of catalytic CoS nanosheets, defective RG coating, and interwoven C fiber interlayers enables not only the coupling of Li+ diffusion and electron transfer but also efficient regulation of the polysulfide reaction, thereby producing a synergistic catalyzing effect on both LiPS conversion and Li2S decomposition. As a result, the batteries with RG@CoS@C membranes as interlayers exhibit stable cycle performance and reversible capacities of 629.2 mA h g(-1) after 420 cycles at 2.0 C. The proposed strategy will contribute to guiding the design of novel composite materials for high-performance Li-S batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Chemistry, Physical

Quantifying the impact of operating temperature on cracking in battery electrodes, using super-resolution of microscopy images and stereology

Orkun Furat, Donal P. Finegan, Zhenzhen Yang, Matthias Neumann, Sangwook Kim, Tanvir R. Tanim, Peter Weddle, Kandler Smith, Volker Schmidt

Summary: The operating temperature has a significant impact on the degradation behavior of batteries. This study investigates the structural degradation of lithium-ion positive electrodes under different operating temperatures, and finds that particle porosity increases with higher cycling temperature, while particle surface area remains similar across different cycling-temperature aging conditions.

ENERGY STORAGE MATERIALS (2024)

Article Chemistry, Physical

Ion-intercalation architecture for robust functionalization of two-dimensional MXenes

Junyan Li, Ming Lu, Weijia Zheng, Wei Zhang

Summary: MXenes are two-dimensional materials with unique structures and properties, which have attracted significant scientific interest. Ion intercalation, as an important mechanism, plays a crucial role in regulating the electronic and chemical properties of MXene materials. This review provides an overview of the interaction events between ions and MXenes, including advanced characterization techniques, influencing factors, mechanisms, and functionalization roles of ion intercalation.

ENERGY STORAGE MATERIALS (2024)

Article Chemistry, Physical

Zwitterion as electrical double layer regulator to in-situ formation of fluorinated interphase towards stable zinc anode

Zhengtai Zha, Tianjiang Sun, Diantao Li, Tao Ma, Weijia Zhang, Zhanliang Tao

Summary: A novel zwitterion additive is developed to improve the electrochemical performance and cycling stability of aqueous zinc batteries. The zwitterion forms a stable solid electrolyte interphase on the electrode surface, isolating the zinc anode from the electrolytes and enabling fast zinc ion migration. The proposed electrolyte shows promising results in symmetric cells and full cells, with long cycling stability and high capacity retention.

ENERGY STORAGE MATERIALS (2024)

Article Chemistry, Physical

Promoting homogeneous lithiation of silicon anodes via the application of bifunctional PEDOT:PSS/PEG composite binders

Nyung Joo Kong, Myeong Seon Kim, Jae Hyun Park, Jongbok Kim, Jungho Jin, Hyun-Wook Lee, Seok Ju Kang

Summary: Polymeric conducting binders have significant research value as they can serve as both binders and conducting agents, increasing the proportion of active materials in batteries and the volumetric energy density. This study explores the potential of a composite of PEDOT:PSS and polyethylene glycol (PEG) as a high-performing binder for silicon anodes. The addition of PEG polymer enhances the conductivity of PEDOT:PSS and improves the mechanical properties of the silicon anode, resulting in extended cycle endurance. The use of operando optical microscopy allows for direct observation of the binder's operation. Consequently, the bifunctional PEDOT:PSS/PEG binder shows promise for high-performance lithium-ion battery binders.

ENERGY STORAGE MATERIALS (2024)

Article Chemistry, Physical

Temperature-dependent viscoelastic liquid MOFs based cellulose gel electrolyte for advanced lithium-sulfur batteries over an extensive temperature range

Yangze Huang, Lixuan Zhang, Jiawen Ji, Chenyang Cai, Yu Fu

Summary: This study proposed a novel temperature-dependent viscoelastic liquid electrolyte and a hollow transition bi-metal selenide as the sulfur host material to address the issues in Li-S batteries. The experiments showed promising results in stabilizing the anode and improving cycling performance.

ENERGY STORAGE MATERIALS (2024)

Article Chemistry, Physical

Recent advances in anode design for mild aqueous Zn-ion batteries

Ao Yu, Wei Zhang, Nimanyu Joshi, Yang Yang

Summary: This review provides a comprehensive overview of research progress in ZIB anodes, including protective coating layers on zinc surfaces and intercalated anode materials. By designing protective coating layers and selecting appropriate intercalated anode materials, the inherent limitations of zinc metal anode can be overcome, leading to improved reliability and performance of ZIBs.

ENERGY STORAGE MATERIALS (2024)

Article Chemistry, Physical

Sandwich-structured anode enables high stability and enhanced zinc utilization for aqueous Zn-ion batteries

Xin Wang, Yumiao Tian, Konghua Yang, Chenhui Ma, Wenqiang Lu, Xiaofei Bian, Nan Chen, Heng Jiang, Yan Li, Xing Meng, Pengyue Gao, Dong Zhang, Fei Du

Summary: Researchers developed a new sandwich deposition approach using boron nitride layer as a current collector, which enhances the performance of aqueous zinc-ion batteries.

ENERGY STORAGE MATERIALS (2024)

Article Chemistry, Physical

Stable sodium-metal batteries with a hierarchical structured electrode toward reversible confinement of Na dendrites

Sang Jun Lee, Dongwoo Kang, Dong Yeol Hyeon, Dong Seok Kim, Suyoon Eom, Su Hwan Jeong, Dong Park Lee, Dawon Baek, Jou-Hyeon Ahn, Gyeong Hee Ryu, Kwi-Il Park, San Moon, Joo-Hyung Kim

Summary: This study utilizes the ice-templating method to create a self-supporting three-dimensional hierarchical porous structure, which effectively inhibits sodium dendrite growth and improves the performance and longevity of sodium-metal batteries.

ENERGY STORAGE MATERIALS (2024)

Article Chemistry, Physical

Enable reversible conversion reaction of copper fluoride batteries by hydroxyl solution and anion acceptor

Yifan Yu, Meng Lei, Yangyang Liu, Keyi Chen, Chuanzhong Lai, Jiulin Hu, Chilin Li

Summary: Metal fluorides as conversion-reaction cathodes have advantages such as low cost, environmentally friendly, and high energy density. In this study, a hydroxyl-rich copper fluoride (Cu2(OH)3F) was proposed as a conversion cathode, coupled with an electrolyte additive engineering, to address the poor reversibility issue. The presence of OH in Cu2(OH)3F enables effective suppression of Cu+ dissolution, resulting in better reaction reversibility and kinetics.

ENERGY STORAGE MATERIALS (2024)