4.7 Article

Isolation and Biological Characterization of Homoisoflavanoids and the Alkylamide N-p-Coumaroyltyramine from Crinum biflorum Rottb., an Amaryllidaceae Species Collected in Senegal

期刊

BIOMOLECULES
卷 11, 期 9, 页码 -

出版社

MDPI
DOI: 10.3390/biom11091298

关键词

Crinum biflorum; homoisoflavanoids; alkylamides; cytotoxicity; antioxidant; antidiabetic and anti-acetylcholinesterase activities

资金

  1. Canada Research Chair on plant specialized metabolism grant [950-232164]

向作者/读者索取更多资源

Crinum biflorum is an Amaryllidaceae plant used in African traditional medicine with compounds like homoisoflavonoids and alkylamide showing promising anticancer, antidiabetic, and anti-acetylcholinesterase properties.
Crinum biflorum Rottb. (syn. Crinum distichum) is an Amaryllidaceae plant used in African traditional medicine but very few studies have been performed on this species from a chemical and applicative point of view. Bulbs of C. biflorum, collected in Senegal, were extracted with ethanol by Soxhlet and the corresponding organic extract was purified using chromatographic methods. The pure compounds were chemically characterized by spectroscopic techniques (1D and 2D H-1 and C-13 NMR, HR MS and ECD) and X-ray analysis. Four homoisoflavonoids (1-4) and one alkylamide (5) were isolated and characterized as 5,6,7-trimethoxy-3-(4-hydroxybenzyl)chroman-4-one (1), as 3-hydroxy-5,6,7-trimethoxy-3-(4-hydroxybenzyl)chroman-4-one (2), as 3-hydroxy-5,6,7-trimethoxy-3-(4-methoxybenzyl)chroman-4-one (3) and as 5,6,7-trimethoxy-3-(4-methoxybenzyl)chroman-4-one (4), and the alkylamide as (E)-N-(4-hydroxyphenethyl)-3-(4-hydroxyphenyl)acrylamide (5), commonly named N-p-coumaroyltyramine. The relative configuration of compound 1 was verified thanks to the X-ray analysis which also allowed us to confirm its racemic nature. The absolute configurations of compounds 2 and 3 were assigned by comparing their ECD spectra with those previously reported for urgineanins A and B. Flavanoids 1, 3 and 4 showed promising anticancer properties being cytotoxic at low micromolar concentrations towards HeLa and A431 human cancer cell lines. The N-p-coumaroyltyramine (5) was selectively toxic to A431 and HeLa cancer cells while it protected immortalized HaCaT cells against oxidative stress induced by hydrogen peroxide. Compounds 1-4 also inhibited acetylcholinesterase activity with compound 3 being the most potent. The anti-amylase and the strong anti-glucosidase activity of compound 5 were confirmed. Our results show that C. biflorum produces compounds of therapeutic interest with anti-diabetic, anti-tumoral and anti-acetylcholinesterase properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据