4.5 Article

Study on the Residual Stress Relieving Mechanism of C/C Composite-Nb Brazed Joint by Employing a Structurally Optimized Graphene Reinforced Cu Foam Interlayer

期刊

FRONTIERS IN MATERIALS
卷 8, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fmats.2021.761088

关键词

Cu foam; interlayer; residual stress; C; C composite; brazing; structurally intact; finite elemental analysis

资金

  1. National Natural Science Foundation of China [51575135, 51622503]

向作者/读者索取更多资源

In this study, graphene reinforced Cu foam composite (G-Cu-f) interlayers were used for brazing C/C composite and Nb. Through optimization of porosity and thickness, the shear strength of the brazed joint was improved and residual stress was effectively mitigated.
Cu foam has previously been investigated and verified to be an excellent interlayer candidate for relieving high residual stress within C/C composite-Nb brazed joints. However, the optimized geometric structure of Cu foam for brazing has never been properly investigated since it was always employed as a reactant for acquiring homogeneous distribution of the interfacial structures in the brazed joints. In this work, graphene reinforced Cu foam composite (G-Cu-f) interlayers were used for brazing C/C composite and Nb. Through the protection effect of graphene on the Cu foam substrate, the impact of porosity and thickness of a structurally intact Cu foam on the joint structure and properties were investigated by finite elemental analysis as well as through experimental studies. By introducing a G-Cu-f interlayer with an optimized porosity of 90% and thickness of 0.15 mm, the shear strength of the C/C composite-Nb brazed joint reached 45 MPa, which is 3.5 times higher than that of the joint brazed directly without an interlayer. The strain energy of the brazed joint assisted by G-Cu-f interlayer reduced from as high as 10.98 x 10(-6) J to 6.90 x 10(-6) J, suggesting that the residual stress was effectively mitigated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据