4.7 Article

Deformation microstructures as well as strengthening and toughening mechanisms of low-density high Mn steels for cryogenic applications

期刊

出版社

ELSEVIER
DOI: 10.1016/j.jmrt.2021.05.018

关键词

High Mn steel; Low density; Planar defects; Strength; Cryogenic impact toughness

资金

  1. National Key R&D Program of China [2017YFB0305000]
  2. Fundamental Research Funds for Central Universities [N2107009]

向作者/读者索取更多资源

Al addition in high Mn steels leads to solid-solution strengthening and grain refinement, but formation of delta-ferrite at 8.0wt% Al content results in brittleness. The major deformation mechanisms change with increasing Al content, impacting the total elongation and impact properties of the steels.
The three Al-bearing high Mn steels were prepared to investigate the effect of Al on microstructures as well as tensile and cryogenic impact properties. The Al addition leads to three strengthening modes of solid-solution, grain refinement and delta-ferrite. The former two strengthening modes can increase yield strength from 406 to 467 MPa with increasing Al content from similar to 3.0 to similar to 5.0 wt%. Once the Al content reaches similar to 8.0 wt%, the yield strength reaches 588 MPa owing to the formation of delta-ferrite. The changes in major deformation mechanisms are sufficient twinning plus deformation bands -> a little twinning plus deformation bands -> nearly no twinning plus highly dense dislocation walls as the Al content increases from similar to 3.0 to similar to 8.0 wt%. A loss in total elongation is mainly due to the suppression of twinning in the 5Al and 8Al steels. However, under an impact loading at similar to 196 degrees C, the major deformation mechanisms are cross twinning and highly dense dislocation walls in the 3Al and 5Al steels, leading to ductile dimpled fracture as well as high impact absorbed energies of similar to 122 and similar to 138 J for the 3Al and 5Al steels, respectively. The toughening modes contain high angle grain boundaries induced deflections of a crack, cross planar defects induced tortuousness of a crack in grain interior and a large plastic deformation dissipating energy. In addition, it is due to the formation of delta-ferrite that the 8Al steel becomes a brittle material at similar to 196 degrees C. The delta-ferrite induced cryogenic brittlement (delta-ICB) effect was sufficiently discussed. (C) 2021 The Author(s). Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据