4.7 Article

Nanotherapies for sepsis by regulating inflammatory signals and reactive oxygen and nitrogen species: New insight for treating COVID-19

期刊

REDOX BIOLOGY
卷 45, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.redox.2021.102046

关键词

Sepsis; COVID-19; RONS; Inflammation; Nanotherapy

资金

  1. National Natural Science Foundation of China, China [21974134, 81974508, 81673492]
  2. InnovationDriven Project of Central South University [202045005]
  3. Changsha Science and Technology Project [kq2001048]
  4. Key Research Project of Ningxia Hui Autonomous Region [2021BEG01001]

向作者/读者索取更多资源

The COVID-19 pandemic has led to an increase in cases of sepsis, and the use of nanomaterials in sepsis treatment has shown potential therapeutic effects. Future research should focus on balancing inflammation, pathogens, and patient tolerance to improve treatment efficacy.
SARS-CoV-2 has caused up to 127 million cases of COVID-19. Approximately 5% of COVID-19 patients develop severe illness, and approximately 40% of those with severe illness eventually die, corresponding to more than 2.78 million people. The pathological characteristics of COVID-19 resemble typical sepsis, and severe COVID-19 has been identified as viral sepsis. Progress in sepsis research is important for improving the clinical care of these patients. Recent advances in understanding the pathogenesis of sepsis have led to the view that an uncontrolled inflammatory response and oxidative stress are core factors. However, in the traditional treatment of sepsis, it is difficult to achieve a balance between the inflammation, pathogens (viruses, bacteria, and fungi), and patient tolerance, resulting in high mortality of patients with sepsis. In recent years, nanomaterials mediating reactive oxygen and nitrogen species (RONS) and the inflammatory response have shown previously unattainable therapeutic effects on sepsis. Despite these advantages, RONS and inflammatory response-based nanomaterials have yet to be extensively adopted as sepsis therapy. To the best of our knowledge, no review has yet discussed the pathogenesis of sepsis and the application of nanomaterials. To help bridge this gap, we discuss the pathogenesis of sepsis related to inflammation and the overproduction RONS, which activate pathogen-associated molecular pattern (PAMP)-pattern recognition receptor (PRR) and damage-associated molecular pattern (DAMP)-PRR signaling pathways. We also summarize the application of nanomaterials in the treatment of sepsis. As highlighted here, this strategy could synergistically improve the therapeutic efficacy against both RONS and inflammation in sepsis and may prolong survival. Current challenges and future developments for sepsis treatment are also summarized.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据