4.7 Article

Aberration-corrected large-scale hybrid metalenses

期刊

OPTICA
卷 8, 期 11, 页码 1405-1411

出版社

OPTICAL SOC AMER
DOI: 10.1364/OPTICA.434040

关键词

-

类别

资金

  1. Knut och Alice Wallenbergs Stiftelse
  2. European Research Council [639109]
  3. European Research Council (ERC) [639109] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

The study focuses on correcting various aberrations in optical systems using hybrid metalenses. Results show that at centimeter-scale hybrid metalenses, chromatic aberration and spherical aberration can be corrected by at least 80% and 70% respectively. The flexibility of adjusting various optical parameters with hybrid metasurfaces opens up new design opportunities for compact and broadband imaging, augmented reality/virtual reality, and holographic projection.
Hybrid components combining the optical power of a refractive and a diffractive optical system can form compact doublet lenses that correct various aberrations. Unfortunately, the diffraction efficiency of these devices decreases as a function of the deflection angle over the element aperture. Here, we address this issue, compensating for chromatic dispersion and correcting for monochromatic aberrations with centimeter-scale hybrid-metalenses. We demonstrate a correction of at least 80% for chromatic aberration and 70% for spherical aberration. We finally present monochromatic and achromatic images that clearly show how these hybrid systems outperform standard refractive lenses. The possibilities to adjust arbitrary spatial amplitude, phase, polarization, and dispersion profiles with hybrid metasurfaces offer unprecedented optical design opportunities for compact and broadband imaging, augmented reality/virtual reality, and holographic projection. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据