4.8 Article

Precise Ultrasound Neuromodulation in a Deep Brain Region Using Nano Gas Vesicles as Actuators

期刊

ADVANCED SCIENCE
卷 8, 期 21, 页码 -

出版社

WILEY
DOI: 10.1002/advs.202101934

关键词

low-frequency ultrasound; nano gas vesicles; transcranial ultrasound stimulation; ultrasonic neuromodulation

资金

  1. Hong Kong Research Grants Council General Research Fund [15104520, 15102417, 15326416]
  2. Hong Kong Innovation Technology Fund Mid-stream Research Program [MRP/018/18X]
  3. Key-Area Research and Development Program of Guangdong Province [2018B030331001]
  4. Hong Kong Polytechnic University [1-ZE1K, 1-BBAU]

向作者/读者索取更多资源

Ultrasound can be used non-invasively for neuromodulation, with the potential to improve spatial resolution and increase effectiveness. A neurostimulation scheme using gas vesicles as actuators showed enhanced and targeted effects without significant cytotoxicity, demonstrating a promising method for improved neurostimulation.
Ultrasound is a promising new modality for non-invasive neuromodulation. Applied transcranially, it can be focused down to the millimeter or centimeter range. The ability to improve the treatment's spatial resolution to a targeted brain region could help to improve its effectiveness, depending upon the application. The present paper details a neurostimulation scheme using gas-filled nanostructures, gas vesicles (GVs), as actuators for improving the efficacy and precision of ultrasound stimuli. Sonicated primary neurons display dose-dependent, repeatable Ca2+ responses, closely synced to stimuli, and increased nuclear expression of the activation marker c-Fos in the presence of GVs. GV-mediated ultrasound triggered rapid and reversible Ca2+ responses in vivo and could selectively evoke neuronal activation in a deep-seated brain region. Further investigation indicate that mechanosensitive ion channels are important mediators of this effect. GVs themselves and the treatment scheme are also found not to induce significant cytotoxicity, apoptosis, or membrane poration in treated cells. Altogether, this study demonstrates a simple and effective method to achieve enhanced and better-targeted neurostimulation with non-invasive low-intensity ultrasound.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据