4.5 Article

The change in contact angle at unsaturated CO2-water conditions: Implication on geological carbon dioxide sequestration

期刊

GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS
卷 17, 期 10, 页码 3969-3982

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/2016GC006510

关键词

-

资金

  1. FIER (The Fund for Innovative Engineering Research - Round V) grant award

向作者/读者索取更多资源

The performance of a geologic carbon storage site strongly depends on the capillary pressure of sealing rock and formations. While wettability of minerals is a key factor in capillary pressure, published contact angles are inconsistent. This study explores the discrepancy of published contact angles in order to reduce the uncertainty of measured laboratory contact angles, and understand the variation of contact angles at unsaturated CO2-water conditions. A ratio of droplet dimension and triple line (or contact line) are used to explain the observed wide range of contact angles and the variation of contact angle at unsaturated conditions. Results show that the shape factor has a good agreement with contact angle change during CO2 dissolution in water. Silica substrate has clear two pinned and slip stages of triple line during CO2 droplet dissolution, which cause contact angle on silica substrate to increase from 34.58 to 42.18. However, mica substrate has the repeated pinned and slip stages due to the heterogeneity of mica surface, which cause contact angle to increase dramatically from 25.48 to 68.18. Thus, both the impact of the unsaturated CO2-water conditions on the wide range of contact angle and the heterogeneity of mineral surface should be considered when one estimates capillary pressure based on contact angle in geological CO2 sequestration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据