4.6 Article

Novel photoelectric material of perovskite-like (CH3)3SPbI3 nanorod arrays with high stability

期刊

JOURNAL OF ENERGY CHEMISTRY
卷 59, 期 -, 页码 581-588

出版社

ELSEVIER
DOI: 10.1016/j.jechem.2020.12.003

关键词

Perovskite solar cells; High stability; (CH3)(3)SPbI3 nanorod arrays; Photodetectors

资金

  1. National Natural Science Foundation of China [U1732126, 11804166, 51602161, 51372119]
  2. Natural Science Foundation of Jiangsu Province [BK20150860]
  3. Postgraduate Research &Practice Innovation Program of Jiangsu Province [KYCX18_0846, KYCX18_0869]

向作者/读者索取更多资源

Sulfur-based perovskite-like (CH3)3SPbI3 demonstrates high stability and excellent optoelectronic properties, maintaining morphology and crystal structure in ambient atmosphere for over 60 days. It offers direct charge transfer channels, showing good performance in solar cells and photodetectors.
Organometallic halide perovskite materials make great achievements in optoelectronic fields, especially in solar cells, in which the organic cations contain amine components. However, the amine with N-H bonds is easily hydrolyzed with moisture in the air, weakening the perovskite materials stability. It is desirable to develop other non-amine stable perovskite materials. In this work, sulfur-based perovskite-like (CH3)(3)SPbI3 nanorod arrays were fabricated by a solution-processed method, which can be indexed hexagonal crystal structure in the space group P63mc. The binding force is exceptionally strong between the non-amine (CH3)(3)S+ and [PbI6](4-) octahedral, leading to high stability of (CH3)(3)SPbI3. The (CH3)(3)SPbI3 nanorod arrays can keep the morphology and crystal structure in an ambient atmosphere over 60 days. In addition, the (CH3)(3)SPbI3 nanorod arrays can offer direct charge transfer channels, which show excellent optoelectronic properties. The (CH3)(3)SPbI3 nanorod arrays-based solar cells with VOx hole transfer layers achieved a power conversion efficiency of 2.07% with negligible hysteresis. And the (CH3)(3)SPbI3 nanorod arrays were also effectively applied in photodetectors with interdigitated gold electrodes. This work demonstrates that sulfur-based perovskite-like (CH3)(3)SPbI3 is a novel promising stable compound with great potential for practical optoelectronic applications. (C) 2020 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Multidisciplinary

MBenes: Two-dimensional transition-metal borides with ordered metal vacancies

Hui Yang, Liang Chu

Summary: 2D MBenes with unique electronic structures and physicochemical properties have shown great promise in various applications. Recently, scientists successfully fabricated 2D monolayer Mo4/3B2-xTz with ordered metal vacancies, demonstrating the feasibility of a top-down approach for the synthesis of MBenes.

CHINESE CHEMICAL LETTERS (2023)

Article Nanoscience & Nanotechnology

Area-Scalable Zn2SnO4 Electron Transport Layer for Highly Efficient and Stable Perovskite Solar Modules

Xuehui Liu, Yi Zhang, Min Chen, Chuanxiao Xiao, Keith Gregory Brooks, Jianxing Xia, Xiao-Xin Gao, Hiroyuki Kanda, Sachin Kinge, Abdullah M. Asiri, Joseph M. Luther, Yaqing Feng, Paul J. Dyson, Mohammad Khaja Nazeeruddin

Summary: The method of preparing a uniform and scalable thick Zn2SnO4 ETL by CBD reported in this study yields high-performance PSMs, with excellent electrical properties and enhanced optical transmittance in the visible region. The Zn2SnO4 ETL influences the perovskite layer formation, facilitating electron extraction and collection, resulting in improved photovoltaic performance in PSMs.

ACS APPLIED MATERIALS & INTERFACES (2022)

Article Energy & Fuels

Crack-Free Monolayer Graphene Interlayer for Improving Perovskite Crystallinity and Energy Level Alignment in Efficient Inverted Perovskite Solar Cells

Ruiyuan Hu, Yonggui Sun, Lutao Li, Taomiao Wang, Hiroyuki Kanda, Cheng Liu, Yi Yang, Shiqi Huang, Abdullah M. Asiri, Liang Chu, Xing'ao Li, Kumar Varoon Agrawal, Mohammad Khaja Nazeeruddin

Summary: The study focused on transferring a defect-free monolayer graphene sheet onto the NiOx film surface as a template for van der Waals epitaxial growth of perovskite films, which enhanced the crystallinity, reduced the energy level offset, and accelerated charge transfer of the devices, leading to an improved power conversion efficiency of the inverted planar perovskite solar cells.

SOLAR RRL (2022)

Editorial Material Materials Science, Multidisciplinary

Omnidirectional annealing process for scalable perovskite films

Bo Cheng, Dong Wang, Qianqian Chu, Liang Chu

Summary: Halide perovskites are promising photovoltaic materials due to their excellent photoelectric properties and low-cost solution process. However, the scalability and reproducibility of perovskite films need improvement. Liquid medium annealing method provides a high-quality and low-defect density growth environment for perovskite films, leading to high-efficiency solar cells.

INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS (2022)

Article Chemistry, Multidisciplinary

Modulating the Electron Transporting Properties of Subphthalocyanines for Inverted Perovskite Solar Cells

Jorge Labella, Cristina Momblona, Pavel Culik, Elisa Lopez-Serrano, Hiroyuki Kanda, Mohammad Khaja Nazeeruddin, Tomas Torres

Summary: This study explores the use of SubPcs as organic non-fullerene electron transport materials (ETMs) in perovskite solar cells (PSCs). By analyzing the influence of SubPc peripheral functionalization on the efficiency and stability of the devices, it is found that insertion of a SubPc layer significantly improves the device stability. The impact of SubPc layer thickness is also evaluated.

FRONTIERS IN CHEMISTRY (2022)

Article Chemistry, Multidisciplinary

Passivating Defects of Perovskite Solar Cells with Functional Donor-Acceptor-Donor Type Hole Transporting Materials

Sarune Daskeviciute-Geguziene, Yi Zhang, Kasparas Rakstys, Chuanxiao Xiao, Jianxing Xia, Zhiheng Qiu, Maryte Daskeviciene, Tomas Paskevicius, Vygintas Jankauskas, Abdullah M. Asiri, Vytautas Getautis, Mohammad Khaja Nazeeruddin

Summary: In this study, a series of donor-acceptor-donor (D-A-D) type small molecules based on fluorene and diphenylethenyl enamine units were developed as hole transporting materials (HTMs) for perovskite solar cells. The incorporation of malononitrile acceptor units not only improved carrier transportation efficiency but also passivated defects through Pb-N interactions. The HTM V1359 achieved a higher power conversion efficiency of over 22% compared to spiro-OMeTAD under the same conditions, demonstrating that HTMs prepared via simplified synthetic routes are not only a cost-effective alternative to spiro-OMeTAD but also exhibit superior efficiency and stability than materials obtained through expensive cross-coupling methods.

ADVANCED FUNCTIONAL MATERIALS (2023)

Review Chemistry, Multidisciplinary

Efficient and Stable Perovskite Solar Cells by Tailoring of Interfaces

Jianxing Xia, Muhammad Sohail, Mohammad Khaja Nazeeruddin

Summary: This review emphasizes the importance of interface tailoring for the efficiency and stability of Perovskite Solar Cells (PSCs). The reported strategies mainly focus on energy level adjustment and trap state passivation to enhance the photovoltaic performance of PSCs. The article classifies molecule modifications based on the electron transfer mechanisms and discusses the application of Density Functional Theory (DFT) method in interface tailoring. Additionally, strategies addressing environmental protection and large-scale mini-modules fabrication through interface engineering are also discussed. This review serves as a guide for researchers to understand interface engineering and design efficient, stable, and eco-friendly interface materials for PSCs.

ADVANCED MATERIALS (2023)

Article Chemistry, Inorganic & Nuclear

Full Solution Process of a Near-Infrared Light-Emitting Electrochemical Cell Based on Novel Emissive Ruthenium Complexes of 1,10-Phenanthroline-Derived Ligands and a Eutectic Alloy as the Top Electrode

Babak Pashaei, Hashem Shahroosvand, Hamed Douroudgari, Saeid Abaspour, Morteza Vahedpour, Mohammad Khaja Nazeeruddin

Summary: Near-infrared luminescent materials have gained significant attention for various applications, such as solid-state lighting, bioimaging, photovoltaic cells, and the telecommunications industry. Through the synthesis and optoelectronic characterization of novel ionic ruthenium complexes, we have discovered red emitters with intense fluorescence. Benchmark calculations and further investigations on electronic transitions have provided valuable insights, and the single-layer devices fabricated with these complexes have exhibited high external quantum efficiency.

INORGANIC CHEMISTRY (2023)

Review Energy & Fuels

Role of Ionic Liquids in Perovskite Solar Cells

Kai Zhang, Xianfu Zhang, Keith G. Brooks, Bin Ding, Sachin Kinge, Yong Ding, Songyuan Dai, Mohammad Khaja Nazeeruddin

Summary: Ionic liquids (ILs) have been extensively studied as additives, solvents, and interface engineering materials for improving the efficiency and stability of perovskite solar cells (PSCs). This review provides insights into the role of ILs in various aspects of PSCs and guides researchers in bulk doping and interface engineering for efficient and stable devices.

SOLAR RRL (2023)

Article Chemistry, Multidisciplinary

Influence of an Organic Salt-Based Stabilizing Additive on Charge Carrier Dynamics in Triple Cation Perovskite Solar Cells

Patrick Doerflinger, Yong Ding, Valentin Schmid, Melina Armer, Roland C. Turnell-Ritson, Bin Ding, Paul J. Dyson, Mohammad Khaja Nazeeruddin, Vladimir Dyakonov

Summary: This study investigates the effect of a stabilizing additive on the charge carrier mobility and lifetime in triple cation perovskite thin films under thermal stress. The results reveal different conductivity behaviors in two temperature regions and identify two dominant scattering mechanisms. The stabilizing additive limits temperature-activated mobile ions and retards degradation of the perovskite film, leading to improved performance and stability.

ADVANCED SCIENCE (2023)

Article Chemistry, Physical

Molecular Tailoring of Pyridine Core-Based Hole Selective Layer for Lead Free Double Perovskite Solar Cells Fabrication

Peng Huang, Manju Sheokand, David Payno Zarceno, Samrana Kazim, Luis Lezama, Mohammad Khaja Nazeeruddin, Rajneesh Misra, Shahzada Ahmad

Summary: To solve the toxicity issues related to lead-based halide perovskite solar cells, a lead-free double halide perovskite Cs2AgBiBr6 is proposed. However, the reduced rate of charge transfer affects the optoelectronic performance of double perovskites. By using interface engineering, a series of pyridine-based small molecules with different arms attached to the pyridine core are designed as hole-selective materials. The solar cells fabricated using Cs2AgBiBr6 as a light harvester and the designed hole-selective layer showed an unprecedented 2.9% power conversion efficiency. Our findings provide guidance for designing small molecules for electro-optical applications and developing lead-free perovskite materials for solar applications.

ACS APPLIED ENERGY MATERIALS (2023)

Article Chemistry, Physical

Design and development of a low-cost imidazole-based hole transporting material for perovskite solar cells

Fatemeh Sadeghi, Babak Pashaei, Babak Nemati Bideh, Negin Sabahi, Hashem Shahroosvand, Mohammad Khaja Nazeeruddin

Summary: Low-cost and facile synthesis routes of hole-transporting materials (HTMs) are promising for reducing the cost of perovskite solar cells. In this study, a cost-effective HTM based on imidazole was synthesized and showed comparable performance to a traditional HTM (spiro-OMeTAD). The easy synthesis and low cost of this HTM make it a potential candidate for low-cost solar cells.

ENERGY ADVANCES (2023)

Review Chemistry, Physical

Synthetic approaches for perovskite thin films and single-crystals

Anastasia Soultati, Marinos Tountas, Konstantina K. Armadorou, Abd. Rashid bin Mohd Yusoff, Maria Vasilopoulou, Mohammad Khaja Nazeeruddin

Summary: Halide perovskites are promising candidates for the next generation of photovoltaic technologies due to their unprecedented increase in power conversion efficiency, low cost, easy fabrication, and excellent semiconductor properties. In this review, the authors investigate various synthetic procedures for depositing perovskite polycrystalline films and single crystal layers, and explore the relationship between synthetic approaches and material properties relevant to photovoltaic and other applications.

ENERGY ADVANCES (2023)

Review Chemistry, Physical

Influence of triphenylamine derivatives in efficient dye-sensitized/organic solar cells

Afsaneh Farokhi, Hashem Shahroosvand, Fatemeh Zisti, Melanie Pilkington, Mohammad Khaja Nazeeruddin

Summary: This comprehensive review focuses on the application of triphenylamines (TPAs), a prominent class of organic molecules, in dye-sensitized/organic solar cells. By exploring synthesis strategies for TPA derivatives, researchers have successfully improved the power conversion efficiencies of the cells and provided strong support for future commercial applications.

JOURNAL OF MATERIALS CHEMISTRY A (2023)

Article Chemistry, Multidisciplinary

Photonic nanostructures mimicking floral epidermis for perovskite solar cells

Maria Vasilopoulou, Wilson Jose da Silva, Anastasia Soultati, Hyeong Pil Kim, Byung Soon Kim, Youjin Reo, Anderson Emanuel Ximim Gavim, Julio Conforto, Fabio Kurt Schneider, Marciele Felippi, Leonidas C. Palilis, Dimitris Davazoglou, Panagiotis Argitis, Thomas Stergiopoulos, Azhar Fakharuddin, Jin Jang, Nicola Gasparini, Mohammad Khaja Nazeeruddin, Yong-Young Noh, Abd. Rashid bin Mohd Yusoff

Summary: In this study, we report a method to replicate photonic nanostructures from the adaxial epidermis of flower petals onto light-polymerized coatings using low-cost nanoimprint lithography at ambient temperature. These multifunctional nanocoatings are applied to perovskite solar cells, providing enhanced light trapping, water repellence, and UV light and environmental moisture protection features.

CELL REPORTS PHYSICAL SCIENCE (2022)

Article Chemistry, Applied

In-situ coating and surface partial protonation co-promoting performance of single-crystal nickel-rich cathode in all-solid-state batteries

Maoyi Yi, Jie Li, Mengran Wang, Xinming Fan, Bo Hong, Zhian Zhang, Aonan Wang, Yanqing Lai

Summary: In this study, polyacrylic acid (PAA) was used as a binder for the cathode in all-solid-state batteries. Through H+/Li+ exchange reaction, a uniform PAA-Li coating layer was formed on the cathode surface, improving the stability of the cathodic interface and the crystal structure. The SC-NCM83-PAA cathode exhibited superior cycling performance compared to traditional PVDF binder.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Arbitrary skin metallization by pencil-writing inspired solid-ink rubbing for advanced energy storage and harvesting

Yonghan Zhou, Zhongfeng Ji, Wenrui Cai, Xuewei He, Ruiying Bao, Xuewei Fu, Wei Yang, Yu Wang

Summary: By learning from the pencil-writing process, a solid-ink rubbing technology (SIR-tech) has been invented to develop durable metallic coatings on diverse substrates. The composite metallic skin by SIR-tech outperforms pure liquid-metal coating and shows great potential for various applications.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Coupling Sb2WO6 microflowers and conductive polypyrrole for efficient potassium storage by enhanced conductivity and K plus diffusivity

Ruiqi Tian, Hehe Zhang, Zeyu Yuan, Yuehua Man, Jianlu Sun, Jianchun Bao, Ming-Sheng Wang, Xiaosi Zhou

Summary: In this study, polypyrrole-encapsulated Sb2WO6 microflowers were synthesized and demonstrated to exhibit excellent potassium storage properties and cycling stability. The improved performance of Sb2WO6@PPy was attributed to the unique microflower structure, enhanced electronic conductivity, and protective PPy coating.

JOURNAL OF ENERGY CHEMISTRY (2024)

Review Chemistry, Applied

Physics-based battery SOC estimation methods: Recent advances and future perspectives

Longxing Wu, Zhiqiang Lyu, Zebo Huang, Chao Zhang, Changyin Wei

Summary: This paper presents a comprehensive survey on physics-based state of charge (SOC) algorithms applied in advanced battery management system (BMS). It discusses the research progresses of physical SOC estimation methods for lithium-ion batteries and presents future perspectives for this field.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

d-d Orbital coupling induced by crystal-phase engineering assists acetonitrile electroreduction to ethylamine

Honggang Huang, Yao Chen, Hui Fu, Cun Chen, Hanjun Li, Zhe Zhang, Feili Lai, Shuxing Bai, Nan Zhang, Tianxi Liu

Summary: The d-d orbital coupling induced by crystal-phase engineering effectively adjusts the electronic structure of electrocatalysts, improving their activity and stability, which is significant for electrocatalyst research.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

In-doping collaboratively controlling back interface and bulk defects to achieve efficient flexible CZTSSe solar cells

Quanzhen Sun, Yifan Li, Caixia Zhang, Shunli Du, Weihao Xie, Jionghua Wu, Qiao Zheng, Hui Deng, Shuying Cheng

Summary: In this study, indium (In) ions were introduced into flexible Cu2ZnSn(S,Se)(4) (CZTSSe) solar cells to modify the back interface and passivate deep level defects in CZTSSe bulk. The results showed that In doping effectively inhibited the formation of secondary phase and V-Sn defects, decreased the barrier height at the back interface, passivated deep level defects in CZTSSe bulk, increased carrier concentration, and significantly reduced the V-OC deficit. Eventually, a flexible CZTSSe solar cell with a power conversion efficiency of 10.01% was achieved. This synergistic strategy of interface modification and bulk defects passivation through In incorporation provides a new approach for fabricating efficient flexible kesterite-based solar cells.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Toward a comprehensive hypothesis of oxygen-evolution reaction in the presence of iron and gold

Negah Hashemi, Jafar Hussain Shah, Cejun Hu, Subhajit Nandy, Pavlo Aleshkevych, Sumbal Farid, Keun Hwa Chae, Wei Xie, Taifeng Liu, Junhu Wang, Mohammad Mahdi Najafpour

Summary: This study investigates the effects of Fe on the oxygen-evolution reaction (OER) in the presence of Au. The study identifies two distinct areas of OER associated with Fe and Au sites at different overpotentials. Various factors were varied to observe the behaviors of FeOxHy/Au during OER. The study reveals strong electronic interaction between Fe and Au, and proposes a lattice OER mechanism based on FeOxHy.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Exploring the impact of Nafion modifier on electrocatalytic CO2 reduction over Cu catalyst

Yingshi Su, Yonghui Cheng, Zhen Li, Yanjia Cui, Caili Yang, Ziyi Zhong, Yibing Song, Gongwei Wang, Lin Zhuang

Summary: This study systematically investigates the key roles of Nafion on Cu nanoparticles electrocatalyst for CO2RR. The Nafion modifier suppresses the hydrogen evolution reaction, increases CO2 concentration and mass transfer process, and activates CO2 molecule to enhance C2 product generation. As a result, the selectivity of the hydrogen evolution reaction is reduced and the efficiency of C2 products is significantly improved.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Electronic structure and spin state regulation of vanadium nitride via a sulfur doping strategy toward flexible zinc-air batteries

Daijie Deng, Honghui Zhang, Jianchun Wu, Xing Tang, Min Ling, Sihua Dong, Li Xu, Henan Li, Huaming Li

Summary: By doping sulfur into vanadium nitride, the S-VN/Co/NS-MC catalyst exhibits enhanced oxygen reduction reaction activity and catalytic performance. When applied in liquid and flexible ZABs, it shows higher power density, specific capacity, and cycling stability.

JOURNAL OF ENERGY CHEMISTRY (2024)

Review Chemistry, Applied

Self-assembly of perovskite nanocrystals: From driving forces to applications

Yi Li, Fei Zhang

Summary: Self-assembly of metal halide perovskite nanocrystals holds significant application value in the fields of display, detector, and solar cell due to their unique collective properties. This review covers the driving forces, commonly used methods, and different self-assembly structures of perovskite nanocrystals. Additionally, it summarizes the collective optoelectronic properties and application areas of perovskite superlattice structures, and presents an outlook on potential issues and future challenges in the development of perovskite nanocrystals.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Ag-integrated mixed metallic Co-Fe-Ni-Mn hydroxide composite as advanced electrode for high-performance hybrid supercapacitors

Anki Reddy Mule, Bhimanaboina Ramulu, Shaik Junied Arbaz, Anand Kurakula, Jae Su Yu

Summary: Direct growth of redox-active noble metals and rational design of multifunctional electrochemical active materials play crucial roles in developing novel electrode materials for energy storage devices. In this regard, silver (Ag) has attracted great attention in the design of efficient electrodes. The construction of multifaceted heterostructure cobalt-iron hydroxide (CFOH) nanowires (NWs)@nickel cobalt manganese hydroxides and/or hydrate (NCMOH) nanosheets (NSs) on the Ag-deposited nickel foam and carbon cloth (i.e., Ag/ NF and Ag/CC) substrates is reported. The as-fabricated Ag@CFOH@NCMOH/NF electrode delivered superior areal capacity value of 2081.9 μA h cm-2 at 5 mA cm-2. Moreover, as-assembled hybrid cell based on NF (HC/NF) device exhibited remarkable areal capacity value of 1.82 mA h cm-2 at 5 mA cm-2 with excellent rate capability of 74.77% even at 70 mA cm-2. Furthermore, HC/NF device achieved maximum energy and power densities of 1.39 mW h cm-2 and 42.35 mW cm-2, respectively. To verify practical applicability, both devices were also tested to serve as a self-charging station for various portable electronic devices.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Insights into ionic association boosting water oxidation activity and dynamic stability

Zanling Huang, Shuqi Zhu, Yuan Duan, Chaoran Pi, Xuming Zhang, Abebe Reda Woldu, Jing-Xin Jian, Paul K. Chu, Qing-Xiao Tong, Liangsheng Hu, Xiangdong Yao

Summary: In this study, it was found that Ni sites act as a host to attract Fe(III) to form Fe(Ni)(III) binary centers, which promote the oxygen evolution reaction (OER) activity and stability by cyclical formation of intermediates. Additionally, other ions can also catalyze the OER process on different electrodes.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Reversible Mn2+/Mn4+double-electron redox in P3-type layer-structured sodium-ion cathode

Jie Zeng, Jian Bao, Ya Zhang, Xun-Lu Li, Cui Ma, Rui-Jie Luo, Chong-Yu Du, Xuan Xu, Zhe Mei, Zhe Qian, Yong-Ning Zhou

Summary: The balance between cationic redox and oxygen redox is crucial for achieving high energy density and cycle stability in sodium batteries. This study demonstrates the reversible Mn2+/Mn4+ redox in a P3-Na0.65Li0.2Co0.05Mn0.75O2 cathode material through Co substitution, effectively suppressing the contribution of oxygen redox and improving structure stability.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

The initial stages of Li2O2 formation during oxygen reduction reaction in Li-O2 batteries: The significance of Li2O2 in charge-transfer reactions within devices

Daniela M. Josepetti, Bianca P. Sousa, Simone A. J. Rodrigues, Renato G. Freitas, Gustavo Doubek

Summary: Lithium-oxygen batteries have high energy density potential but face challenges in achieving high cyclability. This study used operando Raman experiments and electrochemical impedance spectroscopy to evaluate the initial discharge processes in porous carbon electrodes. The results indicate that the reaction occurs at the Li2O2 surface and the growth of Li2O2 forms a more compact and homogeneous structure.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Porous metal oxides in the role of electrochemical CO2 reduction reaction

Ziqi Zhang, Jinyun Xu, Yu Zhang, Liping Zhao, Ming Li, Guoqiang Zhong, Di Zhao, Minjing Li, Xudong Hu, Wenju Zhu, Chunming Zheng, Xiaohong Sun

Summary: This paper explores the challenge of increasing global CO2 emissions and highlights the role of porous metal oxide materials in electrocatalytic reduction of CO2 (CO2RR). Porous metal oxides offer high surface area and tunability for optimizing CO2RR reaction mechanisms.

JOURNAL OF ENERGY CHEMISTRY (2024)