4.6 Article

Perspective on ultramicroporous carbon as sulphur host for Li-S batteries

期刊

JOURNAL OF ENERGY CHEMISTRY
卷 59, 期 -, 页码 242-256

出版社

ELSEVIER
DOI: 10.1016/j.jechem.2020.11.001

关键词

Lithium-sulphur batteries; Ultramicroporous carbon; Sulphur; Cathode; Composites

资金

  1. German Research Foundation (DFG) [390874152, EXC2154]

向作者/读者索取更多资源

Lithium-sulphur (Li-S) batteries are considered as next-generation technology, but the dissolution of polysulphides limits their cycle life. Using ultramicroporous carbon as a host for sulphur can effectively prevent polysulphide dissolution, improving battery stability.
Lithium-sulphur (Li-S) batteries are currently considered as next-generation battery technology. Sulphur is an attractive positive electrode for lithium metal batteries, mainly due to its high capacity (1675 mAh g(-1)) and high specific energy (2600 Wh kg(-1)). The electrochemical reaction of lithium with sulphur in non-aqueous electrolytes results in the formation of electrolyte soluble intermediate lithium-polysulphides. The dissolved polysulphides shuttle to the anode and get reduced at the anode resulting in Li metal corrosion. The solubility of polysulphide gradually reduces the amount of sulphur in the cathode, thereby limiting the cycle life of Li-S batteries. Several strategies have been proposed to improve the cycling stability of Li-S batteries. A unique approach to eliminate the polysulphide shuttle is to use ultramicroporous carbon (UMC) as a host for sulphur. The pore size of UMC which is below 7 angstrom, is the bottleneck for carbonate solvents to access sulphur/polysulphides confined in the pores, thereby preventing the polysulphide dissolution. This perspective article will emphasise the role of UMC host in directing the lithiation mechanism of sulphur and in inhibiting polysulphide dissolution, including the resulting parasitic reaction on the lithium anode. Further, the challenges that need to be addressed by UMC-S based Li-S batteries, and the strategies to realise high power density, high Coulombic efficiency, and resilient Li-S batteries will be discussed. (C) 2020 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Energy & Fuels

Tungsten Oxytetrachloride as a Positive Electrode for Chloride-Ion Batteries

Guruprakash Karkera, Mervyn Soans, Bosubabu Dasari, Ediga Umeshbabu, Musa Ali Cambaz, Zhen Meng, Thomas Diemant, Maximilian Fichtner

Summary: Rechargeable chloride-ion batteries (CIBs) are a promising battery technology with the potential to offer high theoretical volumetric capacities, lower cost, and higher abundance. The challenge lies in finding suitable electrodes and electrolytes. In this study, tungsten oxychloride is introduced as a cathode material for CIBs, demonstrating good electrochemical performance and reversible capacity. Postmortem analysis reveals the reversible transfer of chloride ions between electrodes through a conversion mechanism, paving the way for the use of tungsten chloride-based electrode materials for battery applications.

ENERGY TECHNOLOGY (2022)

Article Chemistry, Physical

Designing gel polymer electrolyte with synergetic properties for rechargeable magnesium batteries

Liping Wang, Zhenyou Li, Zhen Meng, Yanlei Xiu, Bosubabu Dasari, Zhirong Zhao-Karger, Maximilian Fichtner

Summary: This study presents the synthesis of a non-corrosive gel polymer electrolyte based on magnesium tetrakis(hexafluoroisopropyloxy)borate, which demonstrates excellent electrolytic properties. The electrolyte shows high ionic conductivity, reversible Mg plating/stripping capability, and low voltage polarization, while preventing dissolution and diffusion of soluble electrode materials. Additionally, it suppresses the polysulfide shuttle in Mg-S batteries, thus improving battery performance.

ENERGY STORAGE MATERIALS (2022)

Article Chemistry, Physical

Development of Magnesium Borate Electrolytes: Explaining the Success of Mg[B(hfip)4]2 Salt

Piotr Jankowski, Zhenyou Li, Zhirong Zhao-Karger, Thomas Diemant, Maximilian Fichtner, Tejs Vegge, Juan Maria Garcia Lastra

Summary: Magnesium batteries are a promising post-lithium technology, and finding an efficient and safe electrolyte is crucial for their commercialization. Magnesium tetrakis(hexafluoroisopropyloxy)borate (Mg[B(hfip)(4)](2)) is considered one of the best candidates due to its electrochemical properties and chemical stability. In this study, we analyze the unique structure of this salt and the interactions in the electrolyte, revealing the delicate balance between electron-withdrawing effects and ligand stabilization. Understanding the nature of this anion allows for the rational development of new anion structures.

ENERGY STORAGE MATERIALS (2022)

Article Chemistry, Physical

Eldfellite NaV(SO4)2 as a versatile cathode insertion host for Li-ion and Na-ion batteries

Shashwat Singh, Deobrat Singh, Rajeev Ahuja, Maximilian Fichtner, Prabeer Barpanda

Summary: Eldfellite NaVIII(SO4)(2) is introduced as a new versatile cathode material for Li-ion and Na-ion batteries, with potential two-electron uptake. The study provides mechanistic insights into alkali ion migration and the redox center during (de)insertion of Li+/Na+ ions.

JOURNAL OF MATERIALS CHEMISTRY A (2023)

Article Chemistry, Physical

Garnet-Type Lithium Metal Fluorides: A Potential Solid Electrolyte for Solid-State Batteries

Ediga Umeshbabu, Satyanarayana Maddukuri, Doron Aurbach, Maximilian Fichtner, Anji Reddy Munnangi

Summary: We introduced a garnet-type lithium metal fluoride, Li3Na3M2F12 (M = Al, Sc, In), as solid-state lithium-ion conductors for the first time. The mechanically milled Li3Na3M2F12 compounds crystallized in a cubic garnet-like structure. The ionic conductivities of Li3Na3Al2F12, Li3Na3Sc2F12, and Li3Na3In2F12 are relatively low, but still better than the oxide analogues Li(3)Ln(3)Te(2)O(12) (Ln = Er, Gd, Tb, Nd). Strategies for further improving conductivities of garnet-type Li3Na3M2F12 were also presented.

ACS APPLIED ENERGY MATERIALS (2023)

Review Chemistry, Physical

Cathode Materials and Chemistries for Magnesium Batteries: Challenges and Opportunities

Zhenyou Li, Joachim Haecker, Maximilian Fichtner, Zhirong Zhao-Karger

Summary: This review summarizes recent findings related to Mg cathode chemistry, focusing on strategies that promote Mg2+ diffusion and the critical role of cathode-electrolyte interfaces. The article also discusses conversion chemistries and coordination chemistries that bypass Mg2+ diffusion and revisits hybrid systems combining monovalent cathode chemistries with high-capacity Mg anodes. Overall, the aim is to provide fundamental insights into cathode chemistry for practical high-performance Mg batteries.

ADVANCED ENERGY MATERIALS (2023)

Article Electrochemistry

Modeling of Magnesium Intercalation into Chevrel Phase Mo6S8: Report on Improved Cell Design

Janina Drews, Johannes Wiedemann, Rudi Ruben Maca Alaluf, Liping Wang, J. Alberto Blazquez, Zhirong Zhao-Karger, Maximilian Fichtner, Timo Danner, Arnulf Latz

Summary: The impact of different mass loadings and particle size distribution of the active material on the performance of magnesium-ion batteries has been studied. A detailed continuum model is developed to describe the complex intercalation process of magnesium into a Chevrel phase cathode, taking into account the thermodynamics, kinetics, and the influence of desolvation on electrochemical reactions.

BATTERIES & SUPERCAPS (2023)

Article Chemistry, Physical

Unravelling the Chemical and Structural Evolution of Mn and Ti in Disordered Rocksalt Oxyfluoride Cathode Materials Using Operando X-ray Absorption Spectroscopy

Yasaman Shirazi Moghadam, Yang Hu, Abdel El Kharbachi, Stephanie Belin, Thomas Diemant, Jun Chen, Robert A. House, Peter G. Bruce, Maximilian Fichtner

Summary: In this work, synchrotron operando X-ray absorption spectroscopy (XAS) was used to study the chemical and structural evolution of Mn and Ti in Li-rich disordered rocksalt (DRS) cathode compounds for Li-ion batteries. The results provide insights into the development of Mn double-redox reactions in the DRS cathodes from initial cycles to prolonged cycling and elucidate the impacts of the reduced Mn redox activity and the increased local ordering on the cycling stability.

CHEMISTRY OF MATERIALS (2023)

Article Chemistry, Multidisciplinary

Long Cycle-Life Ca Batteries with Poly(anthraquinonylsulfide) Cathodes and Ca-Sn Alloy Anodes

Daniel Bier, Zhenyou Li, Svetlana Klyatskaya, Najoua Sbei, Ananyo Roy, Sibylle Riedel, Maximilian Fichtner, Mario Ruben, Zhirong Zhao-Karger

Summary: In this study, 1,5-poly(anthraquinonylsulfide) (PAQS) was investigated as a cathode material for calcium-ion batteries. When paired with calcium tetrakis(hexafluoroisopropyloxy)borate Ca[B(hfip)(4)](2) electrolytes, PAQS showed cost-effective synthesis and environmentally friendly processing. By replacing the calcium metal anode with a calcium-tin (Ca-Sn) alloy anode, the cycling performance and rate capability of the PAQS cathodes were significantly improved.

CHEMSUSCHEM (2023)

Article Chemistry, Inorganic & Nuclear

Zinc-Substituted Cobalt Phosphate [ZnCo2(PO4)(2)] as a Bifunctional Electrocatalyst

Deepa Singh, Shashwat Singh, Ponnappa Kechanda Prasanna, Rajeev Kumar Rai, Prae Chirawatkul, Sudip Chakraborty, Maximilian Fichtner, Prabeer Barpanda

Summary: ZnCo2(PO4)(2), a zinc-substituted cobalt phosphate synthesized using a low-cost solution combustion route, exhibited efficient oxygen evolution and reduction activities. The crystal structure of ZnCo2(PO4)(2) consists of distorted cobalt and zinc trigonal bipyramids, which allow it to function as a robust bifunctional catalyst comparable to precious metal catalysts. This research provides valuable insights for the development of highly efficient and stable electrocatalysts for metal-air batteries.

INORGANIC CHEMISTRY (2023)

Article Chemistry, Multidisciplinary

Multi-Component PtFeCoNi Core-Shell Nanoparticles on MWCNTs as Promising Bifunctional Catalyst for Oxygen Reduction and Oxygen Evolution Reactions

Tobias Braun, Sirshendu Dinda, Guruprakash Karkera, Georgian Melinte, Thomas Diemant, Christian Kuebel, Maximilian Fichtner, Frank Pammer

Summary: The development of commercially viable fuel cells and metal-air batteries requires effective and cheap bifunctional catalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Multi-component Pt-Fe-Co-Ni nanoparticles on multi-walled carbon nanotubes (MWCNTs) synthesized by wet chemistry route show excellent ORR activity and promising OER activity, comparable to Pt/C or RuO2. The catalyst also has outstanding long-term stability in ORR and OER, indicating the significant effect of Pt substitution by transition metal (TM) and the formation of nanoparticles on catalytic performance.

CHEMISTRYSELECT (2023)

Article Chemistry, Physical

High-Entropy Sulfides as Highly Effective Catalysts for the Oxygen Evolution Reaction

Ling Lin, Ziming Ding, Guruprakash Karkera, Thomas Diemant, Mohana V. V. Kante, Daisy Agrawal, Horst Hahn, Jasmin Aghassi-Hagmann, Maximilian Fichtner, Ben Breitung, Simon Schweidler

Summary: High-entropy sulfides (HESs), as a newly developed class of materials, show great potential as efficient electrocatalysts for various reactions. In this study, HESs containing five or six transition metals are synthesized using a one-step mechanochemical process. By comparing the performances and properties of HESs with different compositions and structures with commercial IrO2, it is found that most of the HESs exhibit excellent electrocatalytic performance for the oxygen evolution reaction (OER) under alkaline conditions, outperforming the reference catalyst IrO2.

SMALL STRUCTURES (2023)

Article Chemistry, Multidisciplinary

Iron-based fluorophosphate Na2FePO4F as a cathode for aqueous zinc-ion batteries

Deepa Singh, Yang Hu, Sher Singh Meena, Rishikesh Vengarathody, Maximilian Fichtner, Prabeer Barpanda

Summary: This study explores the use of iron-based fluorphosphate as a cathode for zinc-ion batteries, which can reversibly intercalate zinc ions and has the advantage of low cost.

CHEMICAL COMMUNICATIONS (2023)

Article Chemistry, Multidisciplinary

Ionically conducting inorganic binders: a paradigm shift in electrochemical energy storage

Shivam Trivedi, Venkat Pamidi, Maximilian Fichtner, M. Anji Reddy

Summary: Ionically conducting inorganic binders, with their properties of ion conduction, water processability, environmental friendliness, low cost, thermal stability, emission-free nature, and safety, are a superior alternative to traditional binders.

GREEN CHEMISTRY (2022)

Article Chemistry, Applied

In-situ coating and surface partial protonation co-promoting performance of single-crystal nickel-rich cathode in all-solid-state batteries

Maoyi Yi, Jie Li, Mengran Wang, Xinming Fan, Bo Hong, Zhian Zhang, Aonan Wang, Yanqing Lai

Summary: In this study, polyacrylic acid (PAA) was used as a binder for the cathode in all-solid-state batteries. Through H+/Li+ exchange reaction, a uniform PAA-Li coating layer was formed on the cathode surface, improving the stability of the cathodic interface and the crystal structure. The SC-NCM83-PAA cathode exhibited superior cycling performance compared to traditional PVDF binder.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Arbitrary skin metallization by pencil-writing inspired solid-ink rubbing for advanced energy storage and harvesting

Yonghan Zhou, Zhongfeng Ji, Wenrui Cai, Xuewei He, Ruiying Bao, Xuewei Fu, Wei Yang, Yu Wang

Summary: By learning from the pencil-writing process, a solid-ink rubbing technology (SIR-tech) has been invented to develop durable metallic coatings on diverse substrates. The composite metallic skin by SIR-tech outperforms pure liquid-metal coating and shows great potential for various applications.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Coupling Sb2WO6 microflowers and conductive polypyrrole for efficient potassium storage by enhanced conductivity and K plus diffusivity

Ruiqi Tian, Hehe Zhang, Zeyu Yuan, Yuehua Man, Jianlu Sun, Jianchun Bao, Ming-Sheng Wang, Xiaosi Zhou

Summary: In this study, polypyrrole-encapsulated Sb2WO6 microflowers were synthesized and demonstrated to exhibit excellent potassium storage properties and cycling stability. The improved performance of Sb2WO6@PPy was attributed to the unique microflower structure, enhanced electronic conductivity, and protective PPy coating.

JOURNAL OF ENERGY CHEMISTRY (2024)

Review Chemistry, Applied

Physics-based battery SOC estimation methods: Recent advances and future perspectives

Longxing Wu, Zhiqiang Lyu, Zebo Huang, Chao Zhang, Changyin Wei

Summary: This paper presents a comprehensive survey on physics-based state of charge (SOC) algorithms applied in advanced battery management system (BMS). It discusses the research progresses of physical SOC estimation methods for lithium-ion batteries and presents future perspectives for this field.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

d-d Orbital coupling induced by crystal-phase engineering assists acetonitrile electroreduction to ethylamine

Honggang Huang, Yao Chen, Hui Fu, Cun Chen, Hanjun Li, Zhe Zhang, Feili Lai, Shuxing Bai, Nan Zhang, Tianxi Liu

Summary: The d-d orbital coupling induced by crystal-phase engineering effectively adjusts the electronic structure of electrocatalysts, improving their activity and stability, which is significant for electrocatalyst research.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

In-doping collaboratively controlling back interface and bulk defects to achieve efficient flexible CZTSSe solar cells

Quanzhen Sun, Yifan Li, Caixia Zhang, Shunli Du, Weihao Xie, Jionghua Wu, Qiao Zheng, Hui Deng, Shuying Cheng

Summary: In this study, indium (In) ions were introduced into flexible Cu2ZnSn(S,Se)(4) (CZTSSe) solar cells to modify the back interface and passivate deep level defects in CZTSSe bulk. The results showed that In doping effectively inhibited the formation of secondary phase and V-Sn defects, decreased the barrier height at the back interface, passivated deep level defects in CZTSSe bulk, increased carrier concentration, and significantly reduced the V-OC deficit. Eventually, a flexible CZTSSe solar cell with a power conversion efficiency of 10.01% was achieved. This synergistic strategy of interface modification and bulk defects passivation through In incorporation provides a new approach for fabricating efficient flexible kesterite-based solar cells.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Toward a comprehensive hypothesis of oxygen-evolution reaction in the presence of iron and gold

Negah Hashemi, Jafar Hussain Shah, Cejun Hu, Subhajit Nandy, Pavlo Aleshkevych, Sumbal Farid, Keun Hwa Chae, Wei Xie, Taifeng Liu, Junhu Wang, Mohammad Mahdi Najafpour

Summary: This study investigates the effects of Fe on the oxygen-evolution reaction (OER) in the presence of Au. The study identifies two distinct areas of OER associated with Fe and Au sites at different overpotentials. Various factors were varied to observe the behaviors of FeOxHy/Au during OER. The study reveals strong electronic interaction between Fe and Au, and proposes a lattice OER mechanism based on FeOxHy.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Exploring the impact of Nafion modifier on electrocatalytic CO2 reduction over Cu catalyst

Yingshi Su, Yonghui Cheng, Zhen Li, Yanjia Cui, Caili Yang, Ziyi Zhong, Yibing Song, Gongwei Wang, Lin Zhuang

Summary: This study systematically investigates the key roles of Nafion on Cu nanoparticles electrocatalyst for CO2RR. The Nafion modifier suppresses the hydrogen evolution reaction, increases CO2 concentration and mass transfer process, and activates CO2 molecule to enhance C2 product generation. As a result, the selectivity of the hydrogen evolution reaction is reduced and the efficiency of C2 products is significantly improved.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Electronic structure and spin state regulation of vanadium nitride via a sulfur doping strategy toward flexible zinc-air batteries

Daijie Deng, Honghui Zhang, Jianchun Wu, Xing Tang, Min Ling, Sihua Dong, Li Xu, Henan Li, Huaming Li

Summary: By doping sulfur into vanadium nitride, the S-VN/Co/NS-MC catalyst exhibits enhanced oxygen reduction reaction activity and catalytic performance. When applied in liquid and flexible ZABs, it shows higher power density, specific capacity, and cycling stability.

JOURNAL OF ENERGY CHEMISTRY (2024)

Review Chemistry, Applied

Self-assembly of perovskite nanocrystals: From driving forces to applications

Yi Li, Fei Zhang

Summary: Self-assembly of metal halide perovskite nanocrystals holds significant application value in the fields of display, detector, and solar cell due to their unique collective properties. This review covers the driving forces, commonly used methods, and different self-assembly structures of perovskite nanocrystals. Additionally, it summarizes the collective optoelectronic properties and application areas of perovskite superlattice structures, and presents an outlook on potential issues and future challenges in the development of perovskite nanocrystals.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Ag-integrated mixed metallic Co-Fe-Ni-Mn hydroxide composite as advanced electrode for high-performance hybrid supercapacitors

Anki Reddy Mule, Bhimanaboina Ramulu, Shaik Junied Arbaz, Anand Kurakula, Jae Su Yu

Summary: Direct growth of redox-active noble metals and rational design of multifunctional electrochemical active materials play crucial roles in developing novel electrode materials for energy storage devices. In this regard, silver (Ag) has attracted great attention in the design of efficient electrodes. The construction of multifaceted heterostructure cobalt-iron hydroxide (CFOH) nanowires (NWs)@nickel cobalt manganese hydroxides and/or hydrate (NCMOH) nanosheets (NSs) on the Ag-deposited nickel foam and carbon cloth (i.e., Ag/ NF and Ag/CC) substrates is reported. The as-fabricated Ag@CFOH@NCMOH/NF electrode delivered superior areal capacity value of 2081.9 μA h cm-2 at 5 mA cm-2. Moreover, as-assembled hybrid cell based on NF (HC/NF) device exhibited remarkable areal capacity value of 1.82 mA h cm-2 at 5 mA cm-2 with excellent rate capability of 74.77% even at 70 mA cm-2. Furthermore, HC/NF device achieved maximum energy and power densities of 1.39 mW h cm-2 and 42.35 mW cm-2, respectively. To verify practical applicability, both devices were also tested to serve as a self-charging station for various portable electronic devices.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Insights into ionic association boosting water oxidation activity and dynamic stability

Zanling Huang, Shuqi Zhu, Yuan Duan, Chaoran Pi, Xuming Zhang, Abebe Reda Woldu, Jing-Xin Jian, Paul K. Chu, Qing-Xiao Tong, Liangsheng Hu, Xiangdong Yao

Summary: In this study, it was found that Ni sites act as a host to attract Fe(III) to form Fe(Ni)(III) binary centers, which promote the oxygen evolution reaction (OER) activity and stability by cyclical formation of intermediates. Additionally, other ions can also catalyze the OER process on different electrodes.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Reversible Mn2+/Mn4+double-electron redox in P3-type layer-structured sodium-ion cathode

Jie Zeng, Jian Bao, Ya Zhang, Xun-Lu Li, Cui Ma, Rui-Jie Luo, Chong-Yu Du, Xuan Xu, Zhe Mei, Zhe Qian, Yong-Ning Zhou

Summary: The balance between cationic redox and oxygen redox is crucial for achieving high energy density and cycle stability in sodium batteries. This study demonstrates the reversible Mn2+/Mn4+ redox in a P3-Na0.65Li0.2Co0.05Mn0.75O2 cathode material through Co substitution, effectively suppressing the contribution of oxygen redox and improving structure stability.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

The initial stages of Li2O2 formation during oxygen reduction reaction in Li-O2 batteries: The significance of Li2O2 in charge-transfer reactions within devices

Daniela M. Josepetti, Bianca P. Sousa, Simone A. J. Rodrigues, Renato G. Freitas, Gustavo Doubek

Summary: Lithium-oxygen batteries have high energy density potential but face challenges in achieving high cyclability. This study used operando Raman experiments and electrochemical impedance spectroscopy to evaluate the initial discharge processes in porous carbon electrodes. The results indicate that the reaction occurs at the Li2O2 surface and the growth of Li2O2 forms a more compact and homogeneous structure.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Porous metal oxides in the role of electrochemical CO2 reduction reaction

Ziqi Zhang, Jinyun Xu, Yu Zhang, Liping Zhao, Ming Li, Guoqiang Zhong, Di Zhao, Minjing Li, Xudong Hu, Wenju Zhu, Chunming Zheng, Xiaohong Sun

Summary: This paper explores the challenge of increasing global CO2 emissions and highlights the role of porous metal oxide materials in electrocatalytic reduction of CO2 (CO2RR). Porous metal oxides offer high surface area and tunability for optimizing CO2RR reaction mechanisms.

JOURNAL OF ENERGY CHEMISTRY (2024)