4.8 Article

Transcriptional profiling of mESC-derived tendon and fibrocartilage cell fate switch

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-021-24535-5

关键词

-

资金

  1. National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) [R01 AR069537, F31 AR073626]
  2. NYSTEM [C32570GG]

向作者/读者索取更多资源

This study identifies transcriptional regulators involved in the induction and differentiation of dense connective tissues. By generating tendon and fibrocartilage cells from mouse embryonic stem cells and utilizing scRNA-seq, the authors reveal molecular mechanisms underlying cell fate switch between these lineages. Additionally, the research demonstrates successful generation of 3D engineered tissues using these differentiation protocols for modeling development and disease.
The transcriptional regulators underlying induction and differentiation of dense connective tissues such as tendon and related fibrocartilaginous tissues (meniscus and annulus fibrosus) remain largely unknown. Using an iterative approach informed by developmental cues and single cell RNA sequencing (scRNA-seq), we establish directed differentiation models to generate tendon and fibrocartilage cells from mouse embryonic stem cells (mESCs) by activation of TGF beta and hedgehog pathways, achieving 90% induction efficiency. Transcriptional signatures of the mESC-derived cells recapitulate embryonic tendon and fibrocartilage signatures from the mouse tail. scRNA-seq further identify retinoic acid signaling as a critical regulator of cell fate switch between TGF beta -induced tendon and fibrocartilage lineages. Trajectory analysis by RNA sequencing define transcriptional modules underlying tendon and fibrocartilage fate induction and identify molecules associated with lineage-specific differentiation. Finally, we successfully generate 3-dimensional engineered tissues using these differentiation protocols and show activation of mechanotransduction markers with dynamic tensile loading. These findings provide a serum-free approach to generate tendon and fibrocartilage cells and tissues at high efficiency for modeling development and disease. The transcriptional regulators underlying the induction and differentiation of dense connective tissues remain largely unknown. Here the authors generate tendon and fibrocartilage cells from mouse embryonic stem cells and apply scRNA-seq to identify molecular regulation of the cell fate switch between these lineages.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据