4.4 Article

Nanoparticles of cisplatin augment drug accumulations and inhibit multidrug resistance transporters in human glioblastoma cells

期刊

SAUDI PHARMACEUTICAL JOURNAL
卷 29, 期 8, 页码 857-873

出版社

ELSEVIER
DOI: 10.1016/j.jsps.2021.07.001

关键词

Cisplatin nanoparticles; Active drug targeting; Targeting multidrug resistance (MDR); transporters; Induction of Apoptosis; Drug uptake and accumulations

资金

  1. Deanship of Scientific Research (DSR) at King Khalid University (KKU), Abha, Kingdom of Saudi Arabia [G.R.P-333-39]

向作者/读者索取更多资源

The study developed a nanoparticulate system for active targeting of cisplatin in GBM, demonstrating promising cytotoxicity and apoptosis induction effects on human GBM cells.
Background: Cisplatin (CSP) is a potent anticancer drug widely used in treating glioblastoma multiforme (GBM). However, CSP's clinical efficacy in GBM contrasted with low therapeutic ratio, toxicity, and multidrug resistance (MDR). Therefore, we have developed a system for the active targeting of cisplatin in GBM via cisplatin loaded polymeric nanoplatforms (CSP-NPs). Methods: CSP-NPs were prepared by modified double emulsion and nanoprecipitation techniques. The physiochemical characterizations of CSP-NPs were performed using zeta sizer, scanning electron microscopy (SEM), drug release kinetics, and drug content analysis. Cytotoxicity, induction of apoptosis, and cell cycle-specific activity of CSP-NPs in human GBM cell lines were evaluated by MTT assay, fluorescent microscopy, and flow cytometry. Intracellular drug uptake was gauged by fluorescent imaging and flow cytometry. The potential of CSP-NPs to inhibit MDR transporters were assessed by flow cytometry-based drug efflux assays. Results: CSP-NPs have smooth surface properties with discrete particle size with required zeta potential, polydispersity index, drug entrapment efficiency, and drug content. CSP-NPs has demonstrated an 'initial burst effect' followed by sustained drug release properties. CSP-NPs imparted dose and time-dependent cytotoxicity and triggered apoptosis in human GBM cells. Interestingly, CSP-NPs significantly increased uptake, internalization, and accumulations of anticancer drugs. Moreover, CSP-NPs significantly reversed the MDR transporters (ABCB1 and ABCG2) in human GBM cells. Conclusion: The nanoparticulate system of cisplatin seems to has a promising potential for active targeting of cisplatin as an effective and specific therapeutic for human GBM, thus eliminating current chemotherapy's limitations. (c) 2021 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据