4.8 Article

Insight into enhanced activation of permanganate under simulated solar irradiation: Rapid formation of manganese species

期刊

WATER RESEARCH
卷 205, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2021.117669

关键词

Permanganate; Solar irradiation; Manganese species; Degradation

资金

  1. National Natural Science Foundation of China [21974097, 52100013]
  2. Guangdong Provincial Department of Education Youth Innovation Talents Project (Natural Science) [2020KQNCX092, 2018KQNCX268]
  3. Student Innovation and Entrepreneurship Program of Wuyi University [2020CX12]
  4. Research Project of High-level Talents of Wuyi University [2019AL024]
  5. Basic and Theoretical Scientific Research Projects of Jiangmen City [2020JC01017, 2019JC01037, 2020030101020004677]
  6. Key Laboratory of Higher Education of Guangdong Prov-ince [2020KSYS004]
  7. Guangdong Provincial Higher Education Key Field Special Project [2020ZDZX2015]

向作者/读者索取更多资源

Utilizing simulated solar activation of permanganate can lead to rapid degradation of micropollutants, with the efficiency of degradation depending on the reactive manganese species involved. The presence of common constituents also influences the process, highlighting the complexity of micropollutant degradation in water treatment.
Herein, permanganate [Mn(VII)] was activated by simulated solar (SS) (SS/Mn(VII)), resulting in rapid degradation of micropollutants in several minutes, with rates of target micropollutants outnumbered those in the Mn (VII) alone and SS. To explore the mechanism in this process, 4-cholorphenol (4-CP), p-hydroxybenzoic acid (p-HBA), and enrofloxacin (ENR) were selected as model compounds. Lines of evidence indicated that reactive manganese species (RMnS) (i.e., Mn(III) and Mn(V)) rather than radicals from Mn(VII) photolysis participated in the conversion of model compounds. Interestingly, roles of RMnS differed among three model compounds, suggesting their selectivity toward micropollutants. Increasing Mn(VII) dosage proved greater micropollutant degradation, while impacts of pH on SS/Mn(VII) performance varied among model compounds. P-HBA and ENR showed the lowest degradation efficiency at alkaline, whereas 4-CP demonstrated the best performance at alkaline, indicating the reactivity of RMnS varied toward micropollutants at different pH values. The quantum yield of Mn(VII) was 8.36 +/- 0.03 x 10(-6) mol Einstein(-1) at pH 7.0. Effects of common co-existing constituents (Cl-, HCO3-, and humic acid (HA)) on micropollutant degradation by SS/Mn(VII) were examined. Specifically, HCO3- positively influenced the 4-CP and p-HBA degradation, whereas ENR was not affected, likely owing to the selectivity of RMnS-HCO3- complexes. HA was conducive to degrade p-HBA due to the production of RMnS-HA complexes, but unfavorable for ENR and 4-CP degradation because of the competitive light absorption and Mn (VII). Furthermore, a number of degradation products of 4-CP, p-HBA, and ENR were identified and possible pathways were proposed accordingly. The effectiveness of this process for micropollutant degradation in real waters, natural sunlight, ultraviolet and visible light via cut-off filtering SS emission was confirmed. This work revealed a great potential of applying SS/Mn(VII) for the marked degradation of micropollutants and facilitated the understandings of Mn(III)/Mn(V) behaviors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Review Engineering, Environmental

Comparative study on ferrate oxidation of BPS and BPAF: Kinetics, reaction mechanism, and the improvement on their biodegradability

Tao Yang, Lu Wang, Yulei Liu, Zhuangsong Huang, Haiyang He, Xianshi Wang, Jin Jiang, Dawen Gao, Jun Ma

WATER RESEARCH (2019)

Article Engineering, Chemical

Remarkable enhancement of a photochemical Fenton-like system (UV-A/Fe (II)/PMS) at near-neutral pH and low Fe(II)/peroxymonosulfate ratio by three alpha hydroxy acids: Mechanisms and influencing factors

Jiaming Zhang, Haoran Song, Yulei Liu, Lu Wang, Dong Li, Chao Liu, Manyu Gong, Zhongxiang Zhang, Tao Yang, Jun Ma

SEPARATION AND PURIFICATION TECHNOLOGY (2019)

Article Engineering, Environmental

Ferrate oxidation of bisphenol F and removal of oxidation products with ferrate resulted particles

Tao Yang, Lu Wang, Yu-Lei Liu, Wei Zhang, Hai-Jun Cheng, Min-Chao Liu, Jun Ma

CHEMICAL ENGINEERING JOURNAL (2020)

Article Engineering, Environmental

Efficient Degradation of Organoarsenic by UV/Chlorine Treatment: Kinetics, Mechanism, Enhanced Arsenic Removal, and Cytotoxicity

Tao Yang, Sisi Wu, Chunping Liu, Yulei Liu, Haochen Zhang, Haijun Cheng, Lu Wang, Lin Guo, Yuying Li, Minchao Liu, Jun Ma

Summary: ROX can be efficiently degraded by UV/chlorine, with the highest degradation rate at pH 7.5, and over 98% of total As can be removed by ferrous after UV/chlorine treatment; cytotoxicity significantly increases during the degradation of ROX, but can be greatly reduced by the combination of UV/chlorine and adsorption.

ENVIRONMENTAL SCIENCE & TECHNOLOGY (2021)

Article Engineering, Environmental

UVA-LED-Assisted Activation of the Ferrate(VI) Process for Enhanced Micropollutant Degradation: Important Role of Ferrate(IV) and Ferrate(V)

Tao Yang, Jiamin Mai, Haijun Cheng, Mengyang Zhu, Sisi Wu, Liuyan Tang, Ping Liang, Jianbo Jia, Jun Ma

Summary: This study investigated the use of UVA-LED in combination with Fe(VI) for degrading micropollutants, showing significant enhancement compared to Fe(VI) alone. Factors such as wavelength, light intensity, and pH were found to influence the degradation performance.

ENVIRONMENTAL SCIENCE & TECHNOLOGY (2022)

Article Engineering, Environmental

Enhanced removal of organoarsenic by chlorination: Kinetics, effect of humic acid, and adsorbable chlorinated organoarsenic

Sisi Wu, Tao Yang, Jiamin Mai, Liuyan Tang, Ping Liang, Mengyang Zhu, Cui Huang, Qiuhua Li, Xiaoxiang Cheng, Minchao Liu, Jun Ma

Summary: In this study, effective removal of organoarsenic ROX was achieved by the combined process of chlorination + Fe(II), with chlorine degrading ROX effectively at different pH levels. The degradation of ROX was mainly attributed to the reaction between HOCl and deprotonated ROX, while humic acid inhibited this degradation. Furthermore, an enhanced removal of total arsenic was observed after chlorination, with over 97.8% of total arsenic removed.

JOURNAL OF HAZARDOUS MATERIALS (2022)

Article Engineering, Environmental

Activation of ferrate(VI) by sulfite for effectively degrading iodinated contrast media and synchronously controlling I-DBPs formation

Tao Yang, Jun Ma, Sisi Wu, Jiamin Mai, Lingrong Chen, Cui Huang, Ge Zeng, Ying Wu, Mengyang Zhu, Yuru Huang, Zongwen Mo, Lin Guo, Jianbo Jia

Summary: In this study, the Fe(VI)/sulfite process was used to effectively remove ICM and control the formation of I-DBPs in the subsequent disinfection.

CHEMICAL ENGINEERING JOURNAL (2022)

Article Engineering, Environmental

Novel solar-driven ferrate(VI) activation system for micropollutant degradation: Elucidating the role of Fe(IV) and Fe(V)

Jiamin Mai, Tao Yang, Jun Ma

Summary: This paper presents a novel process using solar-ferrate(VI) for efficient degradation of micropollutants. The study found that Fe(V) and Fe(IV), rather than reactive oxygen species, played a significant role in the process. The researchers also elucidated the reaction mechanism of Fe(VI) and its degradation of micropollutants. Additionally, the study investigated the effect of pH and various ions on the degradation process. The solar-ferrate(VI) process demonstrated excellent applicability under different irradiation conditions.

JOURNAL OF HAZARDOUS MATERIALS (2022)

Article Engineering, Environmental

Degradation of ibuprofen by the UV/chlorine/TiO2 process: Kinetics, influencing factor simulation, energy consumption, toxicity and byproducts

Haochen Zhang, Zhiyu Zhu, Xiaoqun Zhou, Bo Tang, Jiaxin Yu, Bin Zhang, Jun Ma, Tao Yang

Summary: This study investigated the degradation of ibuprofen (IBP) in the UV/chlorine/TiO2 process. The results showed that this process had a significantly higher degradation rate than UV/chlorine and UV/TiO2, and it could remove solution toxicity more quickly. Additionally, the process generated fewer disinfection byproducts compared to UV/chlorine.

CHEMICAL ENGINEERING JOURNAL (2022)

Article Engineering, Environmental

Enhanced Permanganate Activation under UVA-LED Irradiation: Unraveled Mechanism Involving Manganese Species and Hydroxyl Radical

Tao Yang, Jiamin Mai, Mengyang Zhu, Qiqi Peng, Cui Huang, Sisi Wu, Qinying Tan, Jianbo Jia, Jingyun Fang, Jun Ma

Summary: This study introduced UVA-LED photolysis of Mn(VII) for degrading micropollutants and found that factors like light intensity, radiation wavelengths, pH, and water constituents affect the degradation rates of DCF and 4-CP. RMnS play a significant role in the degradation process.

ENVIRONMENTAL SCIENCE & TECHNOLOGY (2022)

Article Engineering, Environmental

Generation of hydroxyl radicals via activation of Cr(VI) by UVA-LED for rapid decontamination: The important role of Cr(V)

Cui Huang, Tao Yang, Mingwei Li, Jiamin Mai, Sisi Wu, Juan Li, Guobiao Ma, Changyu Liu, Jianbo Jia, Jun Ma

Summary: Hexavalent chromium (Cr(VI)) was efficiently removed by activation with ultraviolet-A light-emitting diode (UVA-LED), degrading various pollutants. The generation of hydroxyl radicals (HO•) and pentavalent chromium (Cr(V)) in the UVA-LED/Cr(VI) system was confirmed. Hydroxyl radicals were identified as the dominant reactive species, aiding in the removal of pollutants in chromium-containing wastewater.

JOURNAL OF HAZARDOUS MATERIALS (2023)

Article Engineering, Environmental

Ozone- and Hydroxyl Radical-Induced Degradation of Micropollutants in a Novel UVA-LED-Activated Periodate Advanced Oxidation Process

Juan Li, Tao Yang, Ge Zeng, Linqian An, Jin Jiang, Zhimin Ao, Jun Ma

Summary: In this study, a novel LED-activated periodate advanced oxidation process (UVA-LED/PI AOP) was developed and investigated for the degradation of naproxen (NPX) and other micropollutants. The UVA-LED/PI AOP showed a broad-spectrum degradation ability, with hydroxyl radical and ozone being the dominant species responsible for NPX degradation. The pH and irradiation wavelength had a negative effect on NPX degradation, explained by the decreased quantum yield of PI. The UVA-LED/PI AOP could be a promising technology for micropollutant treatment in aqueous solutions.

ENVIRONMENTAL SCIENCE & TECHNOLOGY (2023)

Article Environmental Sciences

Calcium sulfite oxidation activated by ferrous iron integrated with membrane filtration for removal of typical algal contaminants

Wenxin Song, Zhimin Gao, Fengxun Tan, Xiaoxiang Cheng, Tao Yang, Daoji Wu, Jingxin Yang, Heng Liang

Summary: The combination of calcium sulfite oxidation and ultrafiltration effectively removes algal pollutants, reduces membrane fouling, and improves membrane filter flux.

CHEMOSPHERE (2023)

Article Engineering, Environmental

The overlooked role of Cr(VI) in micropollutant degradation under solar light irradiation

Tao Yang, Cui Huang, Linqian An, Ge Zeng, Juan Li, Changyu Liu, Xiaolong Xu, Jianbo Jia, Jun Ma

Summary: This study reports for the first time that solar light irradiation of hexavalent chromium (Cr(VI)) can effectively degrade various micropollutants. The solar light/Cr(VI) system increases the removal efficiency of selected micropollutants by 13.3-64.8% compared to direct solar photolysis. The major reactive species in this system is hydroxyl radical (&·OH).

WATER RESEARCH (2023)

Article Engineering, Environmental

Parabens and their metabolite in a marine benthic-dominated food web from the Beibu gulf, South China Sea: Occurrence, trophic transfer and health risk assessment

Rong-Gui Zhu, Chang-Gui Pan, Feng-Jiao Peng, Chao-Yang Zhou, Jun-Jie Hu, Kefu Yu

Summary: This comprehensive survey investigated the occurrence, bioaccumulation, and trophic magnification of parabens and their metabolite 4-HB in a marine food web. Results showed that parabens were the predominant pollutants in marine organisms, with significant bioaccumulation from sediments. The estimated trophic magnification factor indicated biomagnification for MeP and trophic dilution for 4-HB. Overall, the risks for humans consuming marine organisms were found to be low.

WATER RESEARCH (2024)

Article Engineering, Environmental

Partitioning and inactivation of enveloped and nonenveloped viruses in activated sludge, anaerobic and microalgae-based wastewater treatment systems

Andres F. Torres-Franco, Deborah Leroy-Freitas, Cristina Martinez-Fraile, Elisa Rodriguez, Pedro A. Garcia-Encina, Raul Munoz

Summary: Anaerobic and microalgae-based technologies have emerged as sustainable alternatives for municipal wastewater treatment. However, the presence of viruses in the treated wastewater is a major concern for reuse applications. This study assessed the ability of these technologies to reduce viruses during secondary wastewater treatment. The results showed that all technologies were effective in reducing the concentration of viruses, with microalgae-based treatment exhibiting the highest potential for reducing the disinfection requirements of treated wastewater.

WATER RESEARCH (2024)

Article Engineering, Environmental

Reconsidering mercury sources and exposure pathways to bivalves: Insights from mercury stable isotopes

Young Gwang Kim, Sae Yun Kwon, Spencer J. Washburn, Scott C. Brooks, Ji Won Yoon, Lucien Besnard

Summary: The study uses Hg isotope ratios to identify the sources and exposure pathways of mercury in bivalves, finding that dissolved Hg phases in the water column are the primary source and exposure pathway to bivalves. This provides new insights into using bivalves as bioindicators for sediment quality monitoring.

WATER RESEARCH (2024)

Article Engineering, Environmental

Cation exchange resins enhance anaerobic digestion of sewage sludge: Roles in sequential recovery of hydrogen and methane

Hui Geng, Ying Xu, Rui Liu, Dianhai Yang, Xiaohu Dai

Summary: This study investigates the effect of cation exchange resin (CER) on the sequential recovery of hydrogen and methane from anaerobic digestion (AD) and the corresponding mechanisms. The results show that CER can simultaneously enhance the production of hydrogen and methane by promoting the solubilisation, hydrolysis, and acidification of organic matter. Additionally, CER facilitates effective contact between bacteria and organic particulates and reduces the energy barrier for mass transfer during methane production. The study also reveals changes in the microbial community structure and metagenomics during the AD process.

WATER RESEARCH (2024)

Article Engineering, Environmental

Fertilizer recovery from source-separated urine by evaporation with a combined process of dehumidification and the addition of absorbent resin supplement

Xiaojing Lin, Zhan Jin, Shunfeng Jiang, Zhiquan Wang, Suqing Wu, Ke Bei, Min Zhao, Xiangyong Zheng

Summary: Dehumidification combined with addition of absorbent resin supplement (ARS) was used to achieve rapid evaporation of non-pretreated urine, resulting in high water evaporation efficiency and nutrient recovery.

WATER RESEARCH (2024)

Article Engineering, Environmental

Influences of hydrodynamics on microbial community assembly and organic carbon composition of resuspended sediments in shallow marginal seas

Yangli Che, Chaoran Lin, Shen Li, Jiao Liu, Longhai Zhu, Shilei Yu, Nan Wang, Haoshuai Li, Mutai Bao, Yang Zhou, Tonghao Si, Rui Bao

Summary: Hydrodynamic processes play a crucial role in the transmission of sediments, microbial assembly, and organic carbon redistribution in the ocean. Through experiments and analysis, we found that hydrodynamics shape the assembly of microbial communities and control the redistribution of different sourced organic carbon, thereby influencing microbial-mediated biogeochemical transformation.

WATER RESEARCH (2024)

Article Engineering, Environmental

A comprehensive evaluation of the temporal and spatial fouling characteristics of RO membranes in a full-scale seawater desalination plant

Chao Chen, Yu Yang, Nigel J. D. Graham, Zhenyu Li, Xingtao Yang, Zhining Wang, Nadia Farhat, Johannes S. Vrouwenvelder, Li -an Hou

Summary: The fouling of seawater reverse osmosis membranes is a persistent challenge in desalination. This study monitored the operational performance of a desalination plant for 7 years and the fouling development in different areas of membrane modules. The findings showed that operational performance declined over time and fouling mainly occurred at the feed side of the modules, with the highest microbial diversity. Keystone species like Chloroflexi and Planctomycetes played an important role in maintaining community structure and biofilm maturation. Polysaccharides, soluble microbial products, marine humic acid-like substances, and inorganic substances contributed to fouling. Overall, biofouling had a significant impact on membrane fouling after 7 years of operation.

WATER RESEARCH (2024)

Article Engineering, Environmental

Fluctuating redox conditions accelerate the electron storage and transfer in magnetite and production of dark hydroxyl radicals

Dan Li, Jieyi Sun, Yibo Fu, Wentao Hong, Heli Wang, Qian Yang, Junhong Wu, Sen Yang, Jianhui Xu, Yunfei Zhang, Yirong Deng, Yin Zhong, Ping'an Peng

Summary: Sulfidation-oxidation treatment of magnetite (Fe3O4) enhances the production of dark center dot OH, which can efficiently degrade dissolved organic matter (DOM) and accelerate carbon cycling.

WATER RESEARCH (2024)

Article Engineering, Environmental

Full-scale upgrade activated sludge to continuous-flow aerobic granular sludge: Implementing microaerobic-aerobic configuration with internal separators

Cheng Yu, Kaijun Wang, Kaiyuan Zhang, Ruiyang Liu, Pingping Zheng

Summary: This study implemented a microaerobic-aerobic configuration in a full-scale municipal wastewater treatment facility and investigated the effects on sludge characteristics, pollutant removal, microbial community, and granulation mechanisms. The results showed successful transition from flocculent-activated sludge to well-defined AGS after two months of operation. The primary pathways for pollutant removal were simultaneous nitrification, denitrification, and phosphorus removal. Moreover, the incorporation of internal separators induced shifts in the flow pattern, which promoted granulation.

WATER RESEARCH (2024)

Article Engineering, Environmental

Target analysis, occurrence and cytotoxicity of halogenated polyhydroxyphenols as emerging disinfection byproducts in drinking water

Zhe Zhang, Shaoyang Hu, Guangrong Sun, Wei Wang

Summary: Halogenated aromatic disinfection byproducts (DBPs), such as halogenated phenols, have garnered widespread attention due to their high toxicity and prevalence. This study reports on the analysis, occurrence, and cytotoxicity of a group of emerging halogenated aromatic DBPs, known as halogenated polyhydroxyphenols (HPPs), in drinking water.

WATER RESEARCH (2024)

Article Engineering, Environmental

A coupled model to improve river water quality prediction towards addressing non-stationarity and data limitation

Shengyue Chen, Jinliang Huang, Peng Wang, Xi Tang, Zhenyu Zhang

Summary: Accurate prediction of river water quality is crucial for sustainable water management. This study introduces wavelet analysis and transfer learning techniques to assist LSTM modeling, proposing a newly coupled modeling approach that improves short-term prediction of river water quality.

WATER RESEARCH (2024)

Article Engineering, Environmental

Deciphering anaerobic ethanol metabolic pathways shaped by operational modes

Bang Du, Xinmin Zhan, Piet N. L. Lens, Yifeng Zhang, Guangxue Wu

Summary: Efficient anaerobic digestion relies on the cooperation of different microorganisms with different metabolic pathways. This study investigated the effects of different operational modes and the addition of powdered activated carbon (PAC) on ethanol metabolic pathways. The results showed that the SBR mode and the presence of CO2 facilitated ethanol metabolism towards propionate production, while the CFR mode with extended solids retention time enriched Geobacter. Adjusting operational modes and PAC addition can modulate anaerobic ethanol metabolism and enrich Geobacter.

WATER RESEARCH (2024)

Article Engineering, Environmental

Unraveling the factors influencing CO2 emissions from hydroelectric reservoirs in karst and non-karst regions: A comparative analysis

Wanfa Wang, Si-Liang Li, Jun Zhong, Yuanbi Yi, Fujun Yue, Zenglei Han, Qixin Wu, Ding He, Cong-Qiang Liu

Summary: This study compares the carbon biogeochemical processes in karst and non-karst regions within large thermal stratified river-reservoir systems. The results demonstrate that karst reservoirs have a reduced potential for carbon emissions and highlight the importance of considering geologic settings to improve accuracy in regional and global CO2 emission estimates.

WATER RESEARCH (2024)

Article Engineering, Environmental

Rare resistome rather than core resistome exhibited higher diversity and risk along the Yangtze River

Chunxia Jiang, Zelong Zhao, Dong Zhu, Xiong Pan, Yuyi Yang

Summary: This study analyzed the occurrence and distribution of antibiotic resistance genes (ARGs) in different environmental media of the Yangtze River using metagenomics. Core resistome dominated by multidrug resistance genes was found in all samples, while rare resistome dominated by various resistance genes was more prevalent in plasmids. Specific bacteria were identified as hosts for both core and rare resistomes, with high clinical concern ARGs found in the rare resistome. Particle-associated environment provided the most ideal conditions for resistome hosts. This study provided insights into the genetic locations of ARGs and the community assembly mechanisms of ARG hosts in freshwater environments.

WATER RESEARCH (2024)

Article Engineering, Environmental

Uncovering interactions among ternary electron donors of organic carbon source, thiosulfate and Fe0 in mixotrophic advanced denitrification: Proof of concept from simulated to authentic secondary effluent

Yu Zhang, Yongtao He, Linchun Jia, Lei Xu, Zheng Wang, Yueling He, Ling Xiong, Xumeng Lin, Hong Chen, Gang Xue

Summary: By synergizing organic carbon source, thiosulfate, and zero-valent iron, efficient mixotrophic denitrification of oligotrophic secondary effluent can be achieved. Thiosulfate plays a vital role in promoting TN removal efficiency, while corrosion of Fe0 releases OH- to neutralize H+ from thiosulfate-driven denitrification, creating a suitable environment for denitrification. The coordination of thiosulfate and Fe0 maintains the dominance of Thiobacillus for denitrification.

WATER RESEARCH (2024)