4.7 Article

Rhizosphere microbial communities explain positive effects of diverse crop rotations on maize and soybean performance

期刊

SOIL BIOLOGY & BIOCHEMISTRY
卷 159, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.soilbio.2021.108309

关键词

Rhizosphere; Microbiome; Diversified cropping systems; Rotation; Maize; Soybean

资金

  1. South Dakota Corn Utilization Council [58-5447-4-003]

向作者/读者索取更多资源

Microorganisms play essential roles in crop productivity and growth, with diverse crop rotations and different crop legacies contributing to higher yields and biomass. Fungal and bacterial communities are strong predictors of crop yield, with fungal communities influencing seedling biomass and bacterial communities affecting crop recovery from previous crop legacies. These results highlight the importance of changes in plant pathogenic communities in maize and soybean production under different crop rotation conditions.
Microorganisms play essential roles in agricultural systems, and their abundance, diversity and activity can be influenced by management practices. Crop rotational diversity is known to influence both soil microorganisms and crop productivity, yet the specific contributions of microorganisms to rotational benefits are unknown. To facilitate monitoring soil biological processes that support vigorous and high yielding crops, we studied maize (Zea mays L.) and soybean (Glycine max L.), and their associated microorganisms within a two-year maize-soybean rotation and within four-year crop rotations with varying crop sequences. We hypothesized that rhizosphere microbial communities are strong predictors of crop productivity contingent on rotational diversity and previous crop legacy. Sampling at seedling and flowering stages, we assessed rhizosphere bacterial and fungal communities, soil and plant tissue nutrients, aboveground biomass, and yield. Rhizosphere communities varied with rotational diversity and previous crop legacy. Concurrently, maize and soybean yield and biomass were approximately 15-25% larger in more diverse rotations and with different crop legacies, but there were no crop rotational effects on tissue or soil nutrients. Yield differences across rotational diversity or previous crop legacy were better predicted when microbial communities were considered. Fungal communities predicted lower maize seedlings biomass when following soybean, and lower soybean seedling biomass when following maize, independent of rotational diversity. Further, for maize, fungal communities predicted lower maize yield in the maize-soybean rotation, while in the four-year diverse rotations, bacterial communities predicted maize recovery from a soybean legacy by flowering. These results suggest that benefits of four-year rotations in maize and soybean production are driven by changes in plant pathogenic communities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据