4.6 Article

LoPATraN: Low Power Asset Tracking by Means of Narrow Band IoT (NB-IoT) Technology

期刊

SENSORS
卷 21, 期 11, 页码 -

出版社

MDPI
DOI: 10.3390/s21113772

关键词

NB-IoT; GPS; tracking system; asset tracking; LPWAN; IoT; low power devices

向作者/读者索取更多资源

The NB-IoT communication standard is becoming increasingly popular in the IoT field, especially in long-term asset tracking applications due to its low latency, low power consumption, high data rates, and wide coverage capabilities. It can potentially be used as an alternative to or to support the GPS system, offering more precise tracking with lower power consumption.
The narrowband Internet-of-Things (NB-IoT) communication standard is gaining momentum within the big picture of the Internet-of-Things (IoT) owing to its capabilities of ensuring pervasive and wide coverage while limiting power consumption. Therefore, it turns out to be a valuable enabling technology within a considerable number of applications. Apart from traditional remote monitoring and data acquisition purposes where comparable Low Power Wide Area Network (LPWAN) facilities have ruled for years, NB-IoT can potentially carve out space within specific alcoves in which low latency, low power, high data-rates and ubiquitous coverage are fundamentals requirements. Long term asset tracking definitely falls within such niches, and in particular NB-IoT can become a valuable alternative to be exploited by both replacing the conventional Global Position System (GPS) system, or supporting it. To this end, this paper proposes an innovative tracking system prototype for asset shipping which relies on two enabling technologies: GPS and NB-IoT. While position transmission is always put into effect via NB-IoT, it can be fetched by resorting to both GPS (like a standard tracker) or NB-IoT (thus establishing a GPS-less method). As a result, two localization techniques are arranged: the former one is preciser but energy hungrier, while the latter one is coarser but more low power. Such working principles were successfully tested on the field by means of two road tests in as much itineraries. Tests results are in agreement with the expectations underlying the two working principles since the finer one provides a more accurate tracking. In addition, a consumption analysis was also performed aiming at assessing the prototype lifetime. Finally, tests pursuing the assessment of the tracking error were carried out underling the fact that it strongly depends on the geographic deployment of NB-IoT towers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据