4.7 Article

An automated deep learning convolutional neural network algorithm applied for soil salinity distribution mapping in Lake Urmia, Iran

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 778, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.146253

关键词

Deep learning (DL); Convolutional neural network (CNN); Soil salinity distribution (SSD); Frequency ratio (FR) model; Weights of evidence (WOE); Lake Urmia

向作者/读者索取更多资源

This study introduced an innovative DL-CNN approach for rapid and accurate mapping of soil salinity, showing higher efficiency and accuracy compared to traditional methods. Through geospatial assessment models, the study identified the impact of different factors on soil salinity, providing new insights for soil salinity research.
Traditional soil salinity studies are time-consuming and expensive, especially over large areas. This study proposed an innovative deep learning convolutional neural network (DL-CNN) data-driven approach for SSD mapping. Multi-spectral remote sensing data encompassing Landsat series images provide the possibility for frequent assessment of SSD in various regions of the world. Therefore, Landsat 7 ETM+ and 8 OLI images were acquired for years 2005, 2010, 2015 and 2019. Totally, 704 sample points collected from the top 20 cm of the soil surface, which 70% was used to train the network and the remains (30%) were utilized to validate the network. Accordingly, DL-CNN model trained using remote sensing (RS)-derived variables (land surface temperature (LST), Soil moisture (SM) and evapotranspiration) and geospatial data such as NDVI and landuse. To train the CNN, ReLu, Cross-entropy and ADAM were employed respectively as activation, loss/cost functions and optimizer. The results indicated the high confidence of OA 0.94.02, 0.93.99, 0.94.87 and 0.95.0 respectively for years 2005, 2010, 2015 and 2019. These accuracies demonstrated the best performance of automated DL-CNN for SSD mapping compared to RS soil salinity indexes. Furthermore, the FR and WOE models applied in order to generate a geospatial assessment of the DL-CNN classification results. According to the FR model, landuse, LST, LST and NDVI with the frequency ratio of 0.98.25, 0.94.03, 0.97.23 and 0.96.36 selected respectively as more effective factors for SSD in the study area for years 2005, 2010, 2015 and 2019. Also based on the WOE model, landuse, LST, landuse and NDVI with the WOE of 0.88.25, 0.91.88, 0.87.43 and 0.89.02 were ranked respectively for years 2005, 2010, 2015 and 2019 as efficient variables for SSD. In sum, our introduced method can be recommended for SDD spatial modelling in other favored areas with similar environmental conditions. (c) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据